
Hand book
By, Oǖenso Hackers Academy

Kochi | Calicut | Trivandrum

Cybersecurity

OFFENSO HACKERS ACADEMY 1

Introduction to Cybersecurity
Cybersecurity is the practice of protecting systems, networks, and data from digital threats, attacks,
and unauthorized access. As our world becomes more connected through the internet and digital
technologies, cybersecurity has become essential to safeguard personal, corporate, and government
information. A breach in cybersecurity can lead to financial loss, data theft, or a disruption of critical
services, making it a vital aspect of modern society.

1.1. What is Cybersecurity

Cybersecurity refers to the practice of defending computers, servers, mobile devices, electronic
systems, networks, and data from malicious attacks, damage, or unauthorized access. It involves a
combination of technologies, processes, and measures designed to protect systems from cyber
threats. These threats may come from hackers, cybercriminals, state-sponsored actors, or even
unintentional human errors.

Key Concepts in Cybersecurity:

• Data Protection: Safeguarding sensitive and personal information from unauthorized access
or leaks.

• Network Security: Protecting the integrity and confidentiality of data transmitted over a
network.

• Application Security: Ensuring that software applications are secure from vulnerabilities and
exploits.

• Endpoint Security: Securing individual devices such as computers, smartphones, and tablets.
• Identity Management: Managing users' identities and authentication to prevent unauthorized

access.
• Incident Response: Preparing for and responding to cyberattacks or breaches.

OFFENSO HACKERS ACADEMY 2

Cyber security Fundamentals:

CIA stands for Confidentiality, Integrity, and Availability. CIA is a model that is designed to guide
policies for Information Security. It is one of the most popular models used by organizations.

• Confidentiality: Confidentiality is about preventing the disclosure of data to unauthorized
parties. It also means trying to keep the identity of authorized parties involved in sharing and
holding data private and anonymous.

Standard measures to establish confidentiality include:
• Data encryption
• Two-factor authentication
• Biometric verification
• Security tokens

• Integrity: Integrity refers to protecting information from being modified by unauthorized

parties.

Standard measures to guarantee integrity include:
• Cryptographic checksums
• Using file permissions
• Data backups

• Availability: Availability is making sure that authorized parties are able to access the

information when needed.

Standard measures to guarantee availability include:
• Backing up data to external drives
• Implementing firewalls
• Having backup power supplies

• Data redundancy

OFFENSO HACKERS ACADEMY 3

1.2. Importance of Cybersecurity

Cybersecurity is critically important in today’s digital age as it protects sensitive information,
maintains trust, and ensures the safe functioning of digital systems.

Cybersecurity is critical for several reasons:

• Protecting Sensitive Data: As the digital world grows, sensitive information—such as financial
records, health data, and intellectual property—is increasingly stored and transmitted
electronically. A breach of this data can lead to identity theft, financial loss, and reputation
damage.

• Maintaining Privacy: The amount of personal information shared online, from social media to
e-commerce transactions, creates an environment ripe for data theft. Cybersecurity helps
ensure that individuals' privacy is maintained and prevents unauthorized entities from
accessing private information.

• Preventing Financial Loss: Cyberattacks like ransomware, fraud, and financial hacking can
result in significant financial losses for both individuals and organizations. Cybersecurity
measures reduce the risk of such financial disruptions.

• Ensuring Business Continuity: A cyberattack or data breach can disrupt operations, leading to
downtime, loss of productivity, and even long-term damage to a company’s reputation. By
preventing cyber incidents, organizations can continue their operations smoothly.

• Compliance with Legal and Regulatory Requirements: Many industries, such as healthcare,
finance, and education, are subject to strict regulatory frameworks that mandate data
protection and cybersecurity measures. Non-compliance with these regulations can result in
fines, lawsuits, or even loss of business licenses.

OFFENSO HACKERS ACADEMY 4

• National Security: Cyberattacks can target government agencies, critical infrastructure (like
power grids, transportation systems, and healthcare networks), and defence mechanisms,
potentially causing national security threats. Securing these areas is crucial to maintaining
public safety and defence.

1.3. Common Cyber Threats:

Cyber threats come in various forms, each with different techniques and goals. Here are some of the
most common types of cyber threats:

Malware:

Short for "malicious software," malware refers to programs designed to damage, disrupt, or gain
unauthorized access to a system. Examples of malware include viruses, worms, Trojans, and
ransomware.

Password Attacks:

Attackers often attempt to gain access to systems by cracking or guessing weak passwords. These
attacks can include brute force, dictionary attacks, or credential stuffing (using leaked usernames and
passwords from previous breaches).

Eavesdropping Attacks Eavesdropping Attacks:

An Eavesdropping attack is a type of cyberattack where an attacker secretly intercepts and monitors
communications between two parties without their knowledge. It aims to steal sensitive information
such as usernames, passwords, credit card numbers, or confidential conversations.

Phishing:

Phishing is a method of cyberattack where attackers impersonate legitimate organizations (like banks
or online services) to trick individuals into revealing sensitive information (usernames, passwords,
credit card details). These attacks typically occur through email or fake websites.

OFFENSO HACKERS ACADEMY 5

Man-in-the-Middle (MitM) Attacks:

In a MitM attack, the attacker secretly intercepts and potentially alters communications between two
parties. This can occur in email communications, web browsing, or even encrypted connections if
there is a vulnerability.

Drive-by Attack

A drive-by attack is a type of cyberattack where malicious software is unintentionally downloaded
onto a user's device simply by visiting a compromised or malicious website. Unlike other attacks, a
drive-by does not require the user to click on anything or take additional actions beyond loading the
webpage.

Birthday Attack

A birthday attack is a cryptographic attack that exploits the mathematics behind the birthday
paradox to find collisions in hash functions. It targets situations where two different inputs produce
the same hash value (a phenomenon known as a hash collision). This attack is particularly relevant in
the context of digital signatures, password hashing, and data integrity checks.

SQL Injection:

This attack involves inserting malicious code into SQL queries through input fields (like search bars or
login forms) in order to gain unauthorized access to a database, manipulate its contents, or retrieve
sensitive data.

Denial-of-Service (DoS) Attacks:

A DoS attack involves overwhelming a system or network with traffic to make it unavailable to users.
Distributed Denial-of-Service (DDoS) attacks use multiple computers to flood a target system, causing
widespread disruptions.

Cross-Site Scripting (XSS) attack:

A Cross-Site Scripting (XSS) attack is a type of web security vulnerability that allows an attacker to
inject malicious scripts into web pages viewed by other users. The attacker’s goal is to exploit the
trust between a user and a trusted website to execute unauthorized actions or steal sensitive
information.

Insider Threats:

Not all threats come from external sources. Insider threats involve employees or trusted individuals
who intentionally or unintentionally compromise the security of a system. This could include leaking
sensitive data, misusing access privileges, or falling for phishing attempts.

Advanced Persistent Threats (APTs):

APTs are prolonged, sophisticated attacks where cybercriminals infiltrate a network and remain
undetected for a long period of time, typically with the goal of stealing sensitive data or spying on an
organization.

OFFENSO HACKERS ACADEMY 6

1.4. Cybersecurity Roles and Career Paths

As the field of cybersecurity continues to grow, there are numerous career opportunities across
various sectors. Professionals in cybersecurity work to protect systems, identify vulnerabilities, and
respond to incidents. Common cybersecurity roles include:

Cybersecurity Analyst:

• Role: A cybersecurity analyst monitors an organization’s networks and systems for signs of
suspicious activity and responds to security incidents. They perform regular system audits,
analyse security breaches, and help develop and implement security policies.

• Skills: Threat detection, incident response, knowledge of security tools, understanding of
firewalls and network protocols.

Penetration Tester (Ethical Hacker):

• Role: Penetration testers simulate cyberattacks on systems to identify vulnerabilities before
malicious hackers can exploit them. They work in a controlled, ethical manner to identify
weaknesses and provide recommendations for security improvements.

• Skills: Ethical hacking techniques, security tools, vulnerability analysis, scripting languages
(Python, Bash).

OFFENSO HACKERS ACADEMY 7

Incident Responder:

• Role: Incident responders are experts in managing the aftermath of a cybersecurity attack.
They identify, contain, and remediate security breaches and develop strategies for preventing
similar incidents in the future. They investigate and handle cybersecurity incidents, such as
data breaches or malware attacks. Their job is to minimize damage, find out what happened,
and prevent future attacks by improving security measures.

• Skills: Threat detection and analysis, Crisis management, forensic analysis, malware analysis,
disaster recovery planning, Log analysis and monitoring, Communication and reporting
during crises, Familiarity with SIEM tools (Security Information and Event Management).

Cloud Security Specialist:

• Role: With the increasing reliance on cloud services, cloud security specialists are
responsible for securing data and applications hosted on cloud platforms. They ensure that
cloud-based systems meet compliance standards and are protected from external threats.

• Skills: Cloud platforms (AWS, Azure, Google Cloud), encryption, cloud security architecture.

Cybersecurity Consultant:

• Role: Cybersecurity consultants advise organizations on best practices for securing their IT
systems, identifying vulnerabilities, and implementing effective security policies. They often
provide external assessments and audits of security measures.

• Skills: Risk assessment, project management, cybersecurity tools, business continuity
planning.

Security Engineer:

• Role: Security engineers design and implement security infrastructure, such as firewalls, VPNs,
and intrusion detection systems (IDS). They work on preventing attacks and ensure that the
systems are secure by design.

• Skills: Network security, encryption protocols, vulnerability assessment, firewall
configuration.

Security Engineering is a diverse field with various specialized roles that focus on different aspects of
cybersecurity. Here are the some of the different fields of Security Engineering:

• Network Security Engineer

• Application Security Engineer

• Cloud Security Engineer

• Information Security Engineer

• Incident Response Engineer

OFFENSO HACKERS ACADEMY 8

Network Security Engineer

• Role: Network Security Engineers protect an organization's network from cyber threats.
They set up and maintain firewalls, monitor traffic for suspicious activity, and ensure all
connections within the network are secure. Their main job is to keep the network safe and
running smoothly.

• Skills: Firewalls and VPN configuration, Networking protocols (TCP/IP, DNS, HTTP, etc.),
Intrusion Detection/Prevention Systems (IDS/IPS), Network monitoring tools
(Wireshark, SolarWinds), Access control and network segmentation, Security
frameworks and compliance (ISO 27001, NIST), Secure network architecture design

Application Security Engineer

• Role: Application Security Engineers ensure that software and applications are secure from
vulnerabilities. They test, review, and fix security flaws during development to protect
applications from threats like data breaches or hacking.

• Skills: Secure coding practices, Application penetration testing, Knowledge of OWASP
Top 10 vulnerabilities, Tools like Burp Suite, Veracode, and SonarQube, Static and
dynamic code analysis, Scripting languages (Python, Java, JavaScript), Secure
software development lifecycle (SDLC) practices

Chief Information Security Officer (CISO):

• Role: The CISO is the executive responsible for overseeing the cybersecurity strategy of an
entire organization. They work to ensure that the organization is compliant with security
regulations and standards, while aligning cybersecurity practices with business goals.

• Skills: Leadership, risk management, regulatory compliance, strategic planning.

Malware Analyst:

• Role: Malware analysts focus on studying malicious software to understand how it works, how
it spreads, and how it can be neutralized. Their work is critical for responding to malware
outbreaks. They reverse-engineer malware to analyze its behavior, identify vulnerabilities,
and develop strategies to prevent future attacks. Their work helps organizations understand
and protect against new types of malware.

• Skills: Reverse engineering, coding, knowledge of operating systems, malware detection.

OFFENSO HACKERS ACADEMY 9

Cyber Security Trainer/Educator

• Role: Cybersecurity Trainers or Educators teach individuals and organizations about
cybersecurity concepts, best practices, and tools. They develop training programs, conduct
workshops, and ensure students or employees are equipped to handle security challenges in
the real world. Their goal is to build awareness and skills to strengthen security knowledge
across different levels.

• Skills: In-depth knowledge of cybersecurity, Strong communication and teaching skills,
Ability to create training materials and presentations, Familiarity with cybersecurity tools
(Kali Linux, Wireshark, Metasploit, etc.), Understanding of cybersecurity frameworks,
Knowledge of real-world threats and mitigation techniques, Experience with learning
platforms (LMS) and hands-on labs, Ability to simplify complex concepts for diverse
audiences.

Security Architect:

• Role: Security architects design, build, and maintain secure infrastructure for organizations.
They focus on creating robust security systems that can withstand attacks and ensure
continuous business operations.

• Skills: Systems architecture, risk management, cryptography, security design.

Forensic Expert:

• Role: Digital forensics experts investigate cybercrimes and recover evidence from
compromised systems. They analyse digital data to trace attacks and provide legal evidence
for prosecuting offenders.

• Skills: Data recovery, forensic tools, legal compliance, investigative techniques.

OFFENSO HACKERS ACADEMY 10

Networking Fundamentals
Networking Fundamentals refer to the essential principles and concepts that enable devices to
communicate over networks. This includes understanding different types of networks (LAN, WAN,
MAN), key networking devices (routers, switches, hubs, modems), and the role of IP addressing in
identifying devices. Networking relies on protocols like TCP/IP for communication and DNS for domain
resolution. The OSI model helps break down network communication into seven layers for better
understanding. Security measures, such as firewalls and encryption, are crucial to protect data.
Overall, networking fundamentals provide the building blocks for modern communication systems
and the internet.

2.1. Basic Networking Concepts

A network in the context of computer science and telecommunications is a system of interconnected
devices (computers, servers, routers, switches, etc.) that share resources, information, and data with
each other. These connections are made via physical media (like cables) or wirelessly (such as Wi-Fi,
Bluetooth, etc.). Networks are essential for communication, resource sharing, and enabling services
across different computing devices.

2. Types of Networks:

A network type refers to the classification of a network based on its geographical area or the
technological setup used to connect devices. It defines how devices and systems are linked, the
extent of the network's coverage, and the technology used to transmit data across the network.
There are majorly three types of networks:

• Local Area Network (LAN)
• Wide Area Network (WAN)
• Metropolitan Area Network (MAN)

OFFENSO HACKERS ACADEMY 11

Local Area Network (LAN)

Local Area Network (LAN) connects computers and devices within a small geographic area like a
building, office, school, or home. It allows devices to share resources like files, printers, and
applications.

Example: A company's internal network connecting employees' computers, printers, and servers.

Wide Area Network (WAN)

OFFENSO HACKERS ACADEMY 12

Wide Area Network (WAN) spans a much larger geographical area, often connecting multiple LANs
across cities, countries, or even continents. WANs are typically used to connect multiple office
locations of a business or to provide access to the internet.

Example: The Internet itself is a massive WAN, and businesses use private WANs to connect offices in
different cities.

Metropolitan Area Network (MAN)

Metropolitan Area Network (MAN) is a network that spans a city or a large campus. It connects several
LANs within a city or metropolitan area and is often used by universities, businesses, or local
government agencies.

Example: A city's fiber-optic network providing internet access to multiple businesses, schools, and
government institution

Personal Area Network (PAN)

OFFENSO HACKERS ACADEMY 13

Personal Area Network (PAN) is a small-scale network, typically used for connecting personal devices
over short distances (within a few meters). It is mostly used for communication between smartphones,
tablets, laptops, and other peripherals.

Example: Connecting a smartphone to a wireless Bluetooth speaker or a laptop to a wireless printer.

3. Networking Devices

Networking devices are hardware components that allow different devices, such as computers,
printers, routers, and servers, to connect, communicate, and share resources within a network. These
devices play crucial roles in routing, switching, security, and managing traffic across a network. Below
is a detailed overview of key networking devices.

Router

A router is a device that connects different networks, typically a local area network (LAN) to a wide
area network (WAN), like the internet. It is responsible for directing data packets between networks
based on their destination IP address.

How it works:

OFFENSO HACKERS ACADEMY 14

• Data Transmission: Your device sends data to the router (e.g., when you request a website).
• Packet Creation: The data is broken down into small pieces called packets.
• Routing Decision: The router looks at the packet's destination address (like the website you want to
visit).
• Routing Table: The router checks its routing table to find the best path to send the packet.
• Packet Forwarding: The router forwards the packet to the next device or network on the chosen
path.
• Reassembly: When the packets reach their destination, they are reassembled into the original data.
• Network Address Translation (NAT): If you're on a private network, the router assigns a public IP
address for internet access.

Example: Your home Wi-Fi router that connects your devices to the internet.

Modem

A modem (short for modulator-demodulator) is a device that converts digital data from a computer
into analog signals that can be transmitted over telephone lines or cable systems (and vice versa).

How it works:

OFFENSO HACKERS ACADEMY 15

• Connection to ISP: The modem connects to your Internet Service Provider (ISP) using a cable (like
coaxial, fiber, or phone line).
• Signal Conversion: The ISP sends data to your modem in a format that isn’t usable by your devices.
The modem converts the data from the ISP into a digital signal that your devices (like computers or
phones) can understand.
• Sending Data to Router/Device: The modem then sends this converted data to your router (or
directly to a device) so it can access the internet.
• Receiving Data: When you request data (like visiting a website), the modem gets the data from the
internet, converts it back into a format that your devices can understand, and sends it to your router.

Example: The modem that connects your home network to your ISP for internet access.

Difference Between Modem and Router

Feature Modem Router

Function Converts internet signals from
ISP into a usable form for your

devices.

Connects multiple devices to
the internet or local network.

Connection Type Connects directly to the
internet through ISP.

Connects to the modem and
distributes internet to devices.

Network Type Provides access to the internet
(WAN).

Creates a local network (LAN)
and can distribute Wi-Fi.

IP Address Provides a single public IP
address for internet access.

Uses a private IP address for the
local network and manages

multiple devices.

Data Flow Receives data from the ISP and
sends it to the router or device.

Forwards data between the
modem and devices, manages

local network traffic.

Usage Used to connect your home to
the internet.

Used to connect multiple
devices to the internet or local

network.

Wi-Fi Does not provide Wi-Fi (unless
combined with a router).

Provides Wi-Fi to connect
devices wirelessly.

Example Cable, DSL, or Fiber modems. Wireless routers, wired routers.

Switch

A switch operates within a local network (LAN) and is used to connect devices (computers, printers,
servers, etc.) within the same network. Unlike a hub, which broadcasts data to all devices, a switch
sends data only to the device it’s intended for, using MAC (Media Access Control) addresses to
determine the destination.

OFFENSO HACKERS ACADEMY 16

How it works:

• Devices Connected: Devices like computers and printers are connected to the switch using cables.
• Data Sent: When one device wants to send data (e.g., a file), it sends it to the switch.
• Learning Device Info: The switch looks at the sender’s address (called a MAC address) and
remembers where each device is connected.
• Finding the Right Device: The switch checks the destination address (the recipient's MAC address)
in the data packet to figure out where it should go.
• Sending Data: The switch then sends the data directly to the device with the matching MAC
address.
• Updating Memory: If the switch doesn't know where to send the data, it sends it to all connected
devices and learns the correct address for future use.

Example: A network switch in a small office that connects desktop computers and printers.

Hub

A hub is an older, simpler device used to connect multiple devices in a network. It operates at Layer 1
(Physical Layer) of the OSI model and broadcasts data to all connected devices, rather than sending
data to a specific device like a switch.

OFFENSO HACKERS ACADEMY 17

How it works:

• Devices Connected: Multiple devices (like computers and printers) are connected to the hub using
cables.
• Data Sent: When one device wants to send data (e.g., a file), it sends it to the hub.
• Broadcasting: The hub doesn't check who the data is meant for. Instead, it sends the data to all
devices connected to it.
• Device Receives Data: All connected devices receive the data, but only the device that was meant
to get it will process the data.
• No Learning: Unlike a switch, the hub doesn't remember or learn where devices are. It sends data
to everyone every time.

Example: Hubs are now largely obsolete in most networks, having been replaced by switches due to
performance and security concerns.

Difference Between Hub and Switch

Feature Hub Switch
Function Sends data to all devices

connected.
Sends data only to the device it is
meant for.

Data Handling Broadcasts data to all devices. Forwards data to the specific device
based on its MAC address.

Intelligence No intelligence, just forwards
data.

Has intelligence to learn and store
device addresses (MAC addresses).

Efficiency Less efficient, uses more
bandwidth because all devices
receive data.

More efficient, uses bandwidth by
sending data only to the target
device.

Speed Slower, as data is sent to all
devices.

Faster, as it sends data only to the
right device.

Usage Used in smaller, less complex
networks.

Used in larger, more complex
networks.

Data Collision Higher chance of data collisions. Lower chance of data collisions.
Learning
Capability

Does not learn device addresses. Learns device addresses and
remembers them.

OFFENSO HACKERS ACADEMY 18

2.1.3 Network Topology:

There are two major categories of Network Topology i.e. Physical Network topology and Logical
Network Topology. Physical Network Topology refers to the actual structure of the physical
medium for the transmission of data. Logical network Topology refers to the transmission of data
between devices present in the network irrespective of the way devices are connected.

Types of Network Topology:

• Bus Topology
• Star Topology
• Ring Topology
• Mesh Topology
• Tree Topology
• Hybrid Topology
• Point-to-Point Topology

Bus Topology

In a bus topology, all devices (computers, printers, etc.) are connected to a single central cable called
the bus. Data is sent along the bus, and all devices share this communication line.

Advantages:
• Easy to set up: Simple design and minimal cabling.
• Cost-effective: Requires less cable compared to other topologies.
• Good for small networks: Works well for small-scale setups.

Disadvantages:

• Single point of failure: If the bus cable fails, the entire network stops working.
• Limited scalability: Adding more devices can slow down the network.
• Data collisions: Since all devices share the same cable, data collisions are more likely.
• Difficult troubleshooting: Identifying faults in the cable can be time-consuming.

OFFENSO HACKERS ACADEMY 19

Star Topology

In a star topology, all devices are connected to a central device, such as a hub, switch, or router. The
central device acts as a hub for communication between devices.

Advantages:

• Easy to manage: Adding or removing devices doesn’t disrupt the network.
• Isolated failures: If one device fails, it doesn’t affect the rest of the network.
• Efficient data transfer: Data goes directly to the central device, reducing collisions.
• Easy troubleshooting: Problems can be quickly identified at the central hub.

Disadvantages:

• Central point of failure: If the central device (hub or switch) fails, the entire network goes
down.

• Costly: Requires more cables and the central device, increasing costs.
• Limited range: The length of cables can limit the distance between devices and the hub.

Ring Topology

In a ring topology, all devices are connected in a circular manner. Each device is linked to two others,
forming a closed loop. Data travels in one direction (or both directions in a dual ring).

OFFENSO HACKERS ACADEMY 20

Advantages:

• No data collisions: Data flows in one direction, reducing the chance of collisions.
• Equal access: Each device gets equal access to the network, preventing bottlenecks.
• Simple design: Easier to install compared to complex topologies.

Disadvantages:
• Single point of failure: If one device or connection fails, the entire network can be disrupted.
• Slower performance: Data must pass through each device until it reaches the destination,

which can cause delays.
• Hard to troubleshoot: Identifying the exact point of failure can be time-consuming.
• Adding/removing devices: Disrupts the network as the loop needs to be reconfigured.

Mesh Topology

In a mesh topology, every device (node) is directly connected to every other device in the network. It
creates multiple pathways for data to travel, ensuring reliability and efficiency.

There are two types of mesh topology:

Full Mesh: Every device is connected to every other device.
Partial Mesh: Some devices are connected to all, while others are connected only to specific devices.

OFFENSO HACKERS ACADEMY 21

Advantages:

• High reliability: Multiple paths ensure the network remains functional even if one connection
fails.

• Efficient data transfer: Data can take the shortest path to its destination.
• Robust security: Direct connections reduce the chance of unauthorized access.
• Scalability: New devices can be added without affecting other connections.

Disadvantages:

• Expensive: Requires a lot of cabling and hardware, especially in a full mesh.
• Complex setup: Installing and maintaining multiple connections can be challenging.
• Difficult troubleshooting: With so many connections, identifying faults can take time

Tree Topology:

In a tree topology, devices are arranged in a hierarchical structure, resembling a tree. At the top is a
root node, and below it is connected nodes branching out in multiple levels. It combines features of
star and bus topologies.

OFFENSO HACKERS ACADEMY 22

Advantages:

• Scalable: New devices can easily be added at different levels.
• Structured hierarchy: The network is easy to manage and understand.
• Fault isolation: Issues can be isolated to specific branches, making troubleshooting easier.
• Supports large networks: Ideal for large organizations with multiple departments.

Disadvantages:

• Central point of failure: If the root node or backbone cable fails, the entire network is affected.
• Expensive: Requires more cabling and hardware, especially as the network grows.
• Difficult setup: Installation and configuration are more complex than simpler topologies.
• Performance issues: As more nodes are added, the network may slow down.

Hybrid Topology

OFFENSO HACKERS ACADEMY 23

A hybrid topology is a combination of two or more network topologies (e.g., star + bus, mesh + ring).
It inherits the strengths and weaknesses of the topologies it combines, making it flexible and
adaptable to various needs.

Advantages:

• Flexible: Can be customized to meet specific network requirements.
• Scalable: Easy to expand by adding new devices or networks.
• Reliable: If one part of the network fails, other parts can continue functioning.
• Efficient: Combines the best features of different topologies to optimize performance.

Disadvantages:

• Complex: Designing, installing, and configuring a hybrid network can be challenging.
• Expensive: Requires more resources (cabling, devices) and skilled personnel for setup.
• Troubleshooting difficulties: Identifying and resolving issues can take time due to its

complexity.

Point-to-Point Topology

In a point-to-point topology, two devices are directly connected to each other through a single
communication link, without any intermediate devices. It's the simplest form of network connection.

Advantages:

• Simple and straightforward: Easy to set up and manage.
• High performance: Direct connection provides fast and efficient data transfer.
• Low cost: Requires minimal hardware and cabling.
• Secure: Since only two devices are connected, the connection is less likely to be intercepted.

Disadvantages:

• Limited scalability: Only supports two devices, so it's not suitable for larger networks.
• Single point of failure: If the connection fails, the entire communication between the devices

stops.
• Not flexible: Difficult to expand or add more devices to the network.

OFFENSO HACKERS ACADEMY 24

2.2. OSI Model

OSI stands for Open Systems Interconnection. It has been developed by ISO – ‘International
Organization of Standardization ‘, in the year 1984. It is a 7-layer architecture with each layer having
specific functionality to perform. All these 7 layers work collaboratively to transmit the data from one
person to another across the globe. This helps standardize communication and troubleshoot issues
effectively.

Purpose of the OSI Model

• Standardization: Provides a universal framework for designing and understanding networks.
• Troubleshooting: Helps identify and isolate issues in specific layers.
• Interoperability: Ensures devices and protocols from different vendors work together.

How the OSI Model Works

• When data is sent from one device to another, it flows down the layers of the OSI model
on the sender's side (from Layer 7 to Layer 1).

• At the receiving end, the data flows up the layers (from Layer 1 to Layer 7) until it
reaches the user application.

• Each layer adds or processes information (like headers or metadata) to ensure proper
delivery.

OFFENSO HACKERS ACADEMY 25

 2.2.1. Physical Layer (Layer 1)

The Physical Layer is responsible for the transmission of raw bitstreams (1s and 0s) over a physical
medium like copper cables, fiber optics, or wireless signals. This layer defines the hardware elements
involved in the transmission, such as cables, switches, connectors, and network interface cards (NICs).

Functions:

➢Line Configuration: It defines the way how two or more devices can be connected physically.

➢Data Transmission: It defines the transmission mode whether it is simplex, half-duplex or full-
duplex mode between the two devices on the network.

➢Topology: It defines the way how network devices are arranged.

➢Signals: It determines the type of the signal used for transmitting the information.

Key Protocols/Technologies:

Ethernet (for wired LAN connections), Wi-Fi (for wireless communication), USB, Bluetooth, Fiber
optics, DSL, ISDN, ATM

Physical media types: Copper cables (twisted pair, coaxial), fiber optics, radio waves (for wireless)

Example: If you're sending data over an Ethernet cable, the Physical Layer is responsible for converting
the data into electrical signals that can travel through the wires.

2.2.2. Data Link Layer (Layer 2)

OFFENSO HACKERS ACADEMY 26

The Data Link Layer is responsible for providing error-free transfer of data frames (chunks of data)
over the physical medium. It handles issues like framing, addressing, and error detection and
correction to ensure that the data is transmitted correctly from one node to another.

Functions:

Ø Framing: The data link layer translates the physical's raw bit stream into packets known as
Frames.

Ø Flow control: Flow control is the main functionality of the Data-link layer. It is the technique
through which the constant data rate is maintained on both the sides so that no data get
corrupted.

Ø Error control: Error control is achieved by adding a calculated value CRC (Cyclic Redundancy
Check) that is placed to the Data link layer's trailer which is added to the message frame
before it is sent to the physical layer

Key Protocols/Technologies:

 Ethernet (Wired LAN), Wi-Fi (802.11) (Wireless LAN), PPP (Point-to-Point Protocol), HDLC (High-Level
Data Link Control)

Example: When your computer sends a data packet to another device over Ethernet, the Data Link
Layer creates a frame with a MAC address to identify the source and destination devices, and checks
for any transmission errors in the process.

2.2.3. Network Layer (Layer 3)

The Network Layer is responsible for determining the best path for data to travel across multiple
networks, typically using routing. It also handles logical addressing, such as IP addresses, which help
data find its destination over potentially complex, multi-hop networks.

Functions:

Ø Routing: The network layer protocols determine which route is suitable from source to
destination. This function of the network layer is known as routing.

Ø Logical Addressing: To identify each device on Internetwork uniquely, the network layer
defines an addressing scheme. The sender & receiver’s IP addresses are placed in the header
by the network layer. Such an address distinguishes each device uniquely and universally.

OFFENSO HACKERS ACADEMY 27

Determines the best path for data to travel from the source to the destination. Uses IP addresses (or
other addressing schemes) to uniquely identify devices across different networks. Breaks down
larger data into smaller packets and forwards them along the path to the destination. If necessary,
breaks packets into smaller sizes that can be transmitted on different physical media.

Key Protocols/Technologies:

 IP (Internet Protocol): IPv4 and IPv6
ICMP (Internet Control Message Protocol): Used for error messages and diagnostics (e.g., ping).
Routing protocols: OSPF, BGP, RIP, etc.
NAT (Network Address Translation): Translates private IP addresses to public ones (used in routers).

Example: When you access a website, the Network Layer takes your data, adds an IP address for your
computer and the website, and routes it across the internet to the appropriate server.

2.2.4. Transport Layer (Layer 4)

The Transport Layer is responsible for ensuring end-to-end communication reliability between
devices. It ensures that data is delivered error-free, in the correct sequence, and without duplication.

Functions:

Ø Segmentation and Reassembly: This layer accepts the message from the (session) layer, and
breaks the message into smaller units. Each of the segments produced has a header
associated with it. The transport layer at the destination station reassembles the message.

Ø Service Point Addressing: To deliver the message to the correct process, the transport layer
header includes a type of address called service point address or port address. Thus, by
specifying this address, the transport layer makes sure that the message is delivered to the
correct process.

Key Protocols/Technologies:
TCP (Transmission Control Protocol): Provides reliable, connection- oriented communication.
UDP (User Datagram Protocol): Provides connectionless, unreliable communication.
SCTP (Stream Control Transmission Protocol): A newer protocol for multi-streaming and reliable
transmission.

Example: If you send a file to a friend, the Transport Layer (specifically TCP) will break the file into
smaller pieces, number them, and ensure that all pieces are received in the correct order and
retransmit any lost pieces.

OFFENSO HACKERS ACADEMY 28

2.2.5. Session Layer (Layer 5)

The Session Layer is responsible for managing and controlling the dialogues (sessions) between two
devices. It establishes, maintains, and terminates sessions, and coordinates data exchange between
systems.

Functions:

Session establishment, maintenance, and termination: Ensures that a session between two devices
can be established and maintained until the communication is complete.
Dialog control: Manages the flow of data in a half-duplex (one-way at a time) or full-duplex (both ways
at once) mode.
Synchronization: Adds checkpoints or markers to data streams so that transmission can be resumed
from a certain point if necessary.

Key Protocols/Technologies:
NetBIOS: A protocol for communication between applications on different devices.
RPC (Remote Procedure Call): Allows programs to execute procedures on remote systems.
SMB (Server Message Block): Provides shared access to files, printers, and serial ports.

Example: When you're having a video call, the Session Layer helps manage the opening and closing of
the call, ensuring that both parties can communicate in real-time and maintain synchronization
throughout the call.

2.2.6. Presentation Layer (Layer 6)

The Presentation Layer is responsible for translating the data into a format that the Application Layer
can understand. It handles data encoding, data compression, and data encryption.

OFFENSO HACKERS ACADEMY 29

Functions:

Data translation: Converts data into a format that is understood by both sender and receiver (e.g.,
from ASCII to EBCDIC, or from JSON to XML).
Data compression: Compresses data to reduce transmission time or bandwidth usage.
Data encryption: Encrypts data to ensure privacy and security.

Key Protocols/Technologies:

SSL/TLS: For encrypting data during transmission (e.g., for secure web browsing).
JPEG, GIF, PNG: Image file formats.
ASCII, EBCDIC: Character encoding standards.
Compression algorithms: ZIP, GZIP, etc.

Example: If you're visiting a secure website, the Presentation Layer will ensure that any sensitive
information you send (such as passwords or credit card numbers) is encrypted.

2.2.7. Application Layer (Layer 7)

The Application Layer is where the end-user interacts with the network. It provides network services
directly to applications, such as file transfers, email services, and web browsing.

Functions:

Ø File transfer, access, and management (FTAM): An application layer allows a user to access
the files in a remote computer, to retrieve the files from a computer and to manage the files
in a remote computer.

Ø Mail services: An application layer provides the facility for email forwarding and storage.
Ø Directory services: An application provides the distributed database sources and is used to

provide that global information about various objects.

Protocols/Technologies:

HTTP/HTTPS (Hypertext Transfer Protocol) for web browsing.
FTP (File Transfer Protocol) for file transfers.
SMTP, IMAP, POP3 for email communication.
DNS (Domain Name System) for domain name resolution.

Example: When you open a web browser and enter a URL, the Application Layer communicates with
the underlying layers to retrieve the webpage data and present it to you.

OFFENSO HACKERS ACADEMY 30

Layers Protocol Used Common Attacks

Physical Layer Ethernet, Wi-Fi, Bluetooth,
Fiber Optic

Wiretapping, Sniffing

Data Link Layer ARP, CDP, STP MAC Spoofing, ARP Spoofing
Network Layer IPv4, IPv6 IP Spoofing
Transport Layer TCP, UDP TCP SYN Flood
Session Layer Various API’s, Sockets Session Hijacking
Presentation Layer SSL/TLS, JPEG, GIF, FTP SSL/TLS Downgrade Attack
Application Layer HTTP, HTTPS, FTP, SSH, POP3,

DNS, TELNET
Phishing, SQL Injection, XSS

2.3. TCP/IP Model

The TCP/IP Model (Transmission Control Protocol/Internet Protocol Model) is a simpler, practical
framework for how devices communicate over a network, particularly the internet. It’s the backbone
of modern networking and is based on real-world protocols used to connect and transfer data
between systems.

It consists of 4 layers, each representing different functionalities required for network
communication.

• Network Interface Layer (Link Layer)
• Internet Layer
• Transport Layer
• Application Layer

OFFENSO HACKERS ACADEMY 31

How the TCP/IP Model Works

• Sending Data: Data is created by an application (Application Layer), broken into packets (Transport
Layer), assigned an IP address (Internet Layer), and sent via a physical medium (Network Interface
Layer).
• Receiving Data: The process is reversed, with the data traveling up the layers until the user can see
or use it.

2.3.1. Network Interface Layer (Link Layer)

Handles the physical connection to the network and manages data transmission over the hardware,
like cables or Wi-Fi.
The link layer implements the actual topology of the local network that allows the internet layer to
present an addressable interface. It establishes connections between neighboring nodes to send
data.

Key Functions:

• Converts data into electrical signals or radio waves for transmission.
• Adds hardware (MAC) addresses for local delivery.
• Responsible for error detection at the hardware level.

Examples/Protocols: Ethernet, Wi-Fi, ARP (Address Resolution Protocol).

2.3.2. Internet Layer

The internet layer is used to transport data from node to node in a network. This layer is aware of the
endpoints of the connections, but does not worry about the actual connection needed to get from
one place to another. IP addresses are defined in this layer as a way of reaching remote systems in an
addressable manner.

Key Functions:

• Assigns an IP address to each device.
• Splits data into packets and ensures they reach the correct destination.
• Manages the path data takes across networks (routing).

 Examples/Protocols:

• IP (Internet Protocol): Assigns addresses and routes packets.
• ICMP (Internet Control Message Protocol): Used for error messages like "Destination

Unreachable."

2.3.3. Transport Layer

The transport layer is responsible for communication between processes. This level of networking
utilizes ports to address different services. It can build up unreliable or reliable connections
depending on the type of protocol used.

OFFENSO HACKERS ACADEMY 32

Key Functions:

• Divides data into smaller units called segments.
• Adds port numbers to identify the sending and receiving applications.
• Ensures proper order of packets (reassembly) and error-checking.

Examples/Protocols:

• TCP (Transmission Control Protocol): Reliable, ensures data is received in order and error-
free.

• UDP (User Datagram Protocol): Faster, used for real-time applications like video streaming
(no error-checking).

2.3.4. Application Layer:

• In this model, it is the topmost layer, closest to the user. It allows software applications to

access network services.
• The application layer is responsible for creating and transmitting user data between

applications. The applications can be on remote systems, and should appear to operate as if
locally to the end user. The communication is said to take place between peers.

Key Functions:

• Provides protocols and tools for communication between applications.
• Ensures data is formatted and presented properly for the end-user.

Examples/Protocols:

• HTTP/HTTPS: Web browsing.
• SMTP: Email transfer.
• DNS: Resolves domain names into IP addresses.
• FTP: File transfer.

OFFENSO HACKERS ACADEMY 33

Difference Between OSI and TCP/IP Model:

Aspect OSI Model TCP/IP Model
Full Form Open Systems Interconnection

Model
Transmission Control
Protocol/Internet Protocol
Model

Number of Layers 7 Layers 4 Layers
Purpose Conceptual framework for

understanding networking

Practical model used in real-
world networking

Development Developed by ISO as a
reference model

Developed by ARPANET
for practical
implementation

Layer Structure

7 distinct layers (Physical,
Data Link, Network,
Transport, Session,
Presentation, Application)

4 layers (Network Interface,
Internet, Transport,
Application)

Use in Real-World

Rarely used directly for
implementation

Widely used in networking
and the internet

Protocols Independent of specific
protocols

Based on standard internet
protocols (TCP, IP, etc.)

Flexibility More detailed but less
flexible

More flexible and focused
on practical applications

Error Handling

Built into specific layers

Relies on Transport Layer
protocols like TCP

Focus

Theoretical approach for
teaching and
troubleshooting

Real-world implementation
and communication

Examples

Purely a standard model

Used for web browsing, email,
file transfers

OFFENSO HACKERS ACADEMY 34

Transmission Mode

Transmission mode refers to how data is transmitted between devices in a communication system. It
determines the direction of data flow and how devices communicate with each other.

Simplex Mode

Simplex communication is the simplest mode of data transmission where data flows in one direction
only. In this mode, one device is always the sender, and the other is always the receiver.

Key Characteristics of Simplex:

• Unidirectional Data Flow: Data only moves in one direction.
• No Feedback: The receiving device cannot send any acknowledgment or response back to the

sender.
• Used in Broadcasting: Suitable for applications where communication is one-way only.

Examples of Simplex Communication:

• Television Broadcasting: The TV station sends signals to your television, but your TV cannot
send anything back.

• Radio Broadcasting: A radio station transmits signals that the radio device receives.
• Keyboard to Computer: A keyboard sends input to the computer, but the computer does not

send data back to the keyboard.

OFFENSO HACKERS ACADEMY 35

Half-Duplex Mode

Half-Duplex communication allows data to flow in both directions, but only one direction at a time.
Devices take turns to send or receive data, meaning they cannot communicate simultaneously.

Key Characteristics of Half-Duplex:

• Bidirectional Data Flow: Data can flow in both directions but not at the same time.
• Alternating Communication: Devices take turns to send or receive.
• Time-Sharing: Only one device can use the communication channel at a time.

Examples of Half-Duplex Communication:

• Walkie-Talkies: You press a button to talk, and the other person listens. When you release
the button, they can respond.

• Two-Way Radios: Popular in communication for emergency services, where only one person
speaks at a time.

• Legacy Ethernet Networks: Older shared Ethernet systems where devices alternated data
transmission to avoid collisions.

Full-Duplex Mode:

Full-Duplex communication allows data to flow in both directions simultaneously. Devices can send
and receive data at the same time, ensuring continuous and efficient communication.

OFFENSO HACKERS ACADEMY 36

Key Characteristics of Full-Duplex:

• Simultaneous Data Flow: Both devices can send and receive data at the same time.
• No Alternation: Unlike half-duplex, communication happens without waiting for turns.
• Efficient Use of Bandwidth: Full-duplex utilizes the communication channel to its full

potential.

Examples of Full-Duplex Communication:

• Telephone Calls: Both people can speak and listen at the same time without interruptions.
• Video Conferencing: Audio and video streams flow in both directions simultaneously.
• Modern Ethernet Networks: Full-duplex Ethernet connections allow data to be sent and

received on the same cable simultaneously.

2.4. Ports And Protocols

2.4.1. Network Ports:

Network ports are virtual channels that allow devices on a network to communicate with each other
and direct data to specific applications or services running on a device. They are identified by port
numbers, which range from 0 to 65535 and are divided into three categories:

• Well-Known Ports (0–1023)

Ø Reserved for common services and protocols.
Ø Examples: HTTP (80), HTTPS (443), FTP (21).

• Registered Ports (1024–49151)
Ø Used by specific applications or vendors.
Ø Example: MySQL (3306), MS SQL Server (1433).

• Dynamic/Private Ports (49152–65535)
Ø Temporary ports used for custom or temporary purposes.
Ø Example: Ports assigned by operating systems for client-side communication.

Why Are Ports Important?

• Service Identification: Helps identify the type of service being requested or used.
• Efficient Communication: Allows multiple applications to use the same network

simultaneously.
• Security: Open ports can be monitored or restricted to prevent unauthorized access (e.g.,

firewalls).

Port Security

• Open Ports: Ports that are listening for incoming connections.
• Closed Ports: Ports that are not available for communication.
• Firewall Rules: Manage which ports are open, closed, or filtered to secure the network.

OFFENSO HACKERS ACADEMY 37

2.4.2. Networking protocols

Networking protocols are sets of rules and standards that define how data is transmitted and
communicated across networks. They ensure that devices (like computers, routers, or smartphones)
can exchange information in a reliable, secure, and efficient manner. These protocols govern various
aspects of communication, including how data is formatted, addressed, routed, and error-checked.
Networking protocols are essential for enabling devices and systems to "speak the same language"
when interacting over networks like the internet or local area networks (LANs).

Types of Networking Protocols

Here are the main categories and examples of network protocols:

Network Communication Protocols: These protocols handle the transfer of data between devices.

• HTTP (HyperText Transfer Protocol): For accessing websites.
• HTTPS (HTTP Secure): A secure version of HTTP with encryption.
• IP (Internet Protocol): It routes and addresses data packets
• FTP (File Transfer Protocol): Transfers files over a network.
• SMTP (Simple Mail Transfer Protocol): Sends emails.
• DNS (Domain Name System): Resolves domain names into IP addresses.
• DHCP (Dynamic Host Configuration Protocol): It operates at the application layer of the

TCP/IP model.
• ARP (Address Resolution Protocol): It operates at the network layer of the OSI model.

Hypertext Transfer Protocol (HTTP): HTTP is used for transferring web pages and other resources over
the internet. It is the foundation of the World Wide Web, allowing browsers to communicate with
web servers.

Hypertext Transfer Protocol Secure (HTTPS): HTTPS is the secure version of HTTP, the protocol used
for transferring data between your web browser and a website. It adds a layer of security by
encrypting the data being transmitted, ensuring that sensitive information (like passwords, credit
card details, etc.) cannot be intercepted by malicious parties.

Internet Protocol (IP): IP is a connectionless protocol used for routing packets of data across networks.
It is responsible for addressing and forwarding data packets to the correct destination based on their
IP address.
IPv4 and IPv6 are the two primary versions of IP.

File Transfer Protocol (FTP): FTP is used for transferring files between computers on a network. It
supports both uploading and downloading files from a remote server.

Simple Mail Transfer Protocol (SMTP): SMTP is used to send and receive email messages between
mail servers. It ensures that emails are properly addressed and routed to their recipients.

Domain Name System (DNS): DNS is like the "phone book" of the internet. It translates human-
readable domain names (like www.example.com) into IP addresses that computers use to
communicate with each other.

http://www.example.com/

OFFENSO HACKERS ACADEMY 38

Dynamic Host Configuration Protocol (DHCP): DHCP is used to assign IP addresses automatically to
devices on a network, eliminating the need for manual configuration. It helps devices obtain necessary
information like IP address, gateway, and DNS servers.

Address Resolution Protocol (ARP): ARP is used to map a device's IP address to its physical MAC
(Media Access Control) address on a local network. It's essential for devices to communicate with each
other over Ethernet.

Transport Protocols: These ensure reliable or fast delivery of data.

• TCP (Transmission Control Protocol): Provides reliable, ordered delivery of data.
• UDP (User Datagram Protocol): Fast but unreliable data delivery, used for streaming.

Transmission Control Protocol (TCP): TCP is a connection-oriented protocol used to ensure reliable
communication. It establishes a connection between the sender and receiver before transmitting data
and ensures that packets are delivered in the correct order without errors. If a packet is lost or
corrupted, TCP will retransmit it. Commonly used in protocols like HTTP, FTP, and SMTP.

User Datagram Protocol (UDP): UDP is a connectionless protocol that is faster but less reliable than
TCP. It is used in applications where speed is crucial, and minor data loss is acceptable, such as video
streaming, online gaming, or VoIP (Voice over IP).

Security Protocols: These protect data and ensure secure communication.

• SSL/TLS (Secure Sockets Layer/Transport Layer Security): Encrypts web traffic for secure
communication.

• IPSec (Internet Protocol Security): Secures data at the IP layer.

Secure Sockets Layer/Transport Layer Security (SSL/TLS): SSL and TLS are protocols used to secure
data transmitted over a network, ensuring confidentiality, integrity, and authentication. They are most
commonly used in HTTPS (secure HTTP) to protect sensitive data, like passwords or credit card
numbers.

Internet Protocol Security (IPSec): IPSec is a set of protocols used to secure data sent over the
Internet or any other network by providing encryption, authentication, and integrity. It operates at
the network layer and is commonly used for creating VPNs (Virtual Private Networks).

Network Management Protocols: These are used to configure, manage, and monitor networks.

• SNMP (Simple Network Management Protocol): Monitors network devices.
• ICMP (Internet Control Message Protocol): Used for diagnostic tools like ping.

Simple Network Management Protocol (SNMP): SNMP is used to manage and monitor network
devices like routers, switches, and servers. It allows administrators to collect information about
network performance and troubleshoot issues.

Internet Control Message Protocol (ICMP): ICMP is a network layer protocol used for sending error
messages, diagnostic information, and operational queries between devices on a network. It helps in
troubleshooting and managing network issues but does not transmit user data.

OFFENSO HACKERS ACADEMY 39

Data Link Layer Protocols: These manage data transfer within the same network.

• Ethernet: Common for wired networks.
• PPP (Point-to-Point Protocol): For direct device-to-device communication.

Ethernet: It is a network communication protocol used for connecting devices in a local area network
(LAN) to enable data exchange. It defines the rules for data transmission, including how devices
access the network and how data is formatted and transmitted.

Point-to-Point Protocol (PPP): PPP is used to establish a direct connection between two nodes,
commonly used in dial-up Internet connections, DSL, or VPNs.

Wireless Protocols: These enable wireless communication between devices.

• Wi-Fi (IEEE 802.11): For wireless internet access.
• Bluetooth: For short-range communication.

Wireless Fidelity (Wi-Fi): It is a technology that allows devices to connect to a network and access the
Internet wirelessly using radio waves. It eliminates the need for physical cables and operates under
the IEEE 802.11 standards.

Bluetooth is a wireless communication technology used for short-range data transfer between
devices. It operates using radio waves in the 2.4 GHz frequency band and is commonly used for
connecting peripherals like headphones, keyboards, and smartphones.

HTTP vs. HTTPS

Aspect HTTP (Hypertext Transfer
Protocol)

HTTPS (Hypertext Transfer
Protocol Secure)

Definition Protocol for transferring data
between a web browser and
server.

Secure version of HTTP that encrypts
data during transfer.

Security Data is sent in plain text, making
it vulnerable to interception.

Data is encrypted using SSL/TLS,
ensuring secure communication.

Port Used Uses Port 80. Uses Port 443.
Encryption No encryption is provided. Encrypts data using SSL/TLS to

protect against eavesdropping.
URL Format URLs start with http://. URLs start with https://.
Use Cases Used for non-sensitive data (e.g.,

basic websites).
Used for sensitive data (e.g., login
pages, e-commerce sites).

Trust
Indicator

No padlock icon in the browser;
may show as "Not Secure."

Shows a padlock icon in the browser,
indicating a secure connection.

Performance Faster, as it doesn't require
encryption.

Slightly slower due to encryption and
decryption overhead.

OFFENSO HACKERS ACADEMY 40

How Ports and Protocols works:

• Protocols Define Communication Rules:
§ Protocols like HTTP, FTP, or SMTP set the rules for how data is sent and received.

• Ports Act as Endpoints:
§ Ports are like specific channels that direct data to the correct application or service on a

device.
• Each Protocol Uses a Specific Port:

§ For example:
HTTP uses Port 80 (web browsing).
HTTPS uses Port 443 (secure web browsing).
FTP uses Port 21 (file transfers).

• Data is Sent with a Port and Protocol:
§ When data is transmitted, it includes the protocol and port information to identify its

purpose and destination.
• Ports Ensure Correct Delivery:

§ The port number ensures that data reaches the correct service or application on the
device, even if multiple services are running.

• Protocols Handle Data Formatting:
§ The protocol ensures that the data is structured and understood correctly between

devices.
• Together, They Enable Communication:

§ Ports and protocols work together to allow devices to send and receive data efficiently
and without confusion.

COMMON PORTS AND PROTOCOLS

Port Number Description
1 TCP Port Services Multiplexer (TCPMUX)
20 FTP -Data
21 FTP-Control
22 SSH Remote Login Protocol
23 TELNET
25 Simple Mail Transfer Protocol (SMTP)
53 Domain Name System (DNS)
80 HTTP
109 POP2
110 POP3
115 Simple File Transfer Protocol (SFTP)
156 SQL Server
443 HTTPS
546 DHCP Client
547 DHCP Server

OFFENSO HACKERS ACADEMY 41

2.5 IP And Subnetting

The IP protocol is one of the fundamental protocols that allow the internet to work. IP addresses are
unique on each network and they allow machines to address each other across a network. It is
implemented on the internet layer in the IP/TCP model.

Networks can be linked together, but traffic must be routed when crossing network boundaries. This
protocol assumes an unreliable network and multiple paths to the same destination that it can
dynamically change between. There are a number of different implementations of the protocol.

The most common implementation today is IPv4, although IPv6 is growing in popularity as an
alternative due to the scarcity of IPv4 addresses available and improvements in the protocols
capabilities.

IPv4 and IPv6 IP Addresses

IPv4 addresses are 32 bits long (four bytes). An example of an IPv4 address is 216.58.216.164, which
is the front page of Google.com. The maximum value of a 32-bit number is 232, or 4,294,967,296. So
the maximum number of IPv4 addresses, which is called its address space, is about 4.3 billion. In the
1980s, this was sufficient to address every networked device, but scientists knew that this space would
quickly become exhausted. Technologies such as NAT have delayed the problem by allowing many
devices to use a single IP address, but a larger address space is needed to serve the modern Internet.
A major advantage of IPv6 is that it uses 128 bits of data to store an address, permitting 2128 unique
addresses, or 340,282,366,920,938,463,463,374,607,431,768,211,456. The size of IPv6's address
space — 340 Duodecillion — is much, much larger than IPv4.

OFFENSO HACKERS ACADEMY 42

Dynamic and Static IP Address

IP addresses can be either static or dynamic. Static IP addresses never change. They serve as a
permanent Internet address and provide a simple and reliable way for remote computers to contact
you. Static IP addresses reveal such information as the continent, country, region, and city in which a
computer is located; the ISP (Internet Service Provider) that services that particular computer; and
such technical information as the precise latitude and longitude of the country, as well as the locale,
of the computer. Many websites provide IP address look-up services to their visitors, free of charge. If
you're curious about your own IP address, you can locate these websites by performing a Google
search.

Dynamic IP addresses

Dynamic IP addresses are temporary and are assigned (via DHCP) each time a computer joins a
network. They are, in effect, borrowed from a pool of IP addresses that are shared among various
computers. Since a limited number of static IP addresses are available, many ISPs reserve a portion of
their assigned addresses for sharing among their subscribers in this way. This lowers costs and allows
them to service far more subscribers than they otherwise could.

Static IP addresses

Static IP addresses are generally preferable for such uses as VOIP (Voice over Internet Protocol), online
gaming, or any other purpose where users need to make it easy for other computers to locate and
connect to them. Easy access can also be facilitated when using a dynamic IP address through the use
of a dynamic DNS service, which enables other computers to find you even though you may be using
a temporary, one-time IP address. This often entails an extra charge, however, so check with your ISP.
Static IP addresses are considered somewhat less secure than dynamic IP addresses, since they are
easier to track for data mining purposes. However, following safe Internet practices can help mitigate
this potential problem and keep your computer secure no matter what type of IP address you use.

OFFENSO HACKERS ACADEMY 43

Private and Public IP

IP addresses can be either public or private. Public IP addresses are unique and allow devices to
connect to the Internet, serving as a global identifier. They are assigned by Internet Service Providers
(ISPs) and enable direct communication with other devices and services over the Internet. Public IP
addresses can reveal information such as the continent, country, region, and city where the device is
located, along with details about the ISP providing the service. They are essential for hosting
websites, servers, and other Internet-facing services.

Private IP Address

In short, private IP addresses are used "inside" a network, like the one you probably run at home.
These types of IP addresses are used to provide a way for your devices to communicate with your
router and all the other devices in your private network. Private IP addresses can be set manually or
assigned automatically by your router.

Public IP Address

Public IP addresses are used on the "outside" of your network and are assigned by your ISP(Internet
Service Provider). It's the main address that your home or business network uses to communicate with
the rest of the networked devices around the world (i.e. the internet). It provides a way for the devices
in your home, for example, to reach your ISP, and therefore the outside world, allowing them to do
things like access websites and communicate directly with other people's computers. Both private IP
addresses and public IP addresses are either dynamic or static, which means that, respectively, they
either change or they don't.

OFFENSO HACKERS ACADEMY 44

IP Address Classes

Internet Protocol hierarchy contains several classes of IP Addresses to be used efficiently in various
situations as per the requirement of hosts per network. Broadly, the IPv4 Addressing system is divided
into five classes of IP Addresses. Class A, Class B, Class C, Class D and Class E, while only A, B, and C are
commonly used. All the five classes are identified by the first octet of IP Address. The first octet
referred here is the left most of all. The octets numbered as follows depicting dotted decimal notation
of IP Address.

Class	A

• Purpose: Designed for very large networks. It supports up to 16,777,214 hosts (devices) per
network.

• Identification: The first bit is always 0.

Class	B	

• Purpose: Used for medium-sized networks. It supports up to 65,534 hosts per network.
• Identification: The first two bits are always 10.

Class	C	

• Purpose: Designed for small networks. It supports up to 254 hosts per network.
• Identification: The first three bits are always 110.

Class	D	

• Purpose: Reserved for multicast addressing. It is not used for regular network
communications or assigning to devices.

• Identification: The first four bits are always 1110.

Class	E	

• Purpose: Reserved for experimental purposes and research. It is not available for public or
private use.

• Identification: The first four bits are always 1111.

OFFENSO HACKERS ACADEMY 45

2.6. TCP (Transmission Control Protocol)

Transmission Control Protocol (TCP) is a connection-oriented protocol for communications that helps
in the exchange of messages between different devices over a network. It is one of the main
protocols of the TCP/IP suite. In OSI model, it operates at the transport layer. It lies between
the Application and Network Layers which are used in providing reliable delivery services.
The Internet Protocol (IP), which establishes the technique for sending data packets between
computers, works with TCP. Establishes reliable connections in the transport layer of the TCP/IP
model, ensuring accurate data transmission.

Functionality

Encapsulation: Divides data into packets for efficient transmission.

Reliability: Includes mechanisms for error-checking, data sequence reassembly, and delivery
verification.

Connection Setup: Uses a three-way handshake process to establish a connection, followed by a
four-way handshake to terminate it.

Packet Structure

• Source Port: Identifies the sender’s port.
• Destination Port: Identifies the receiver’s port.
• Sequence Number: Tracks the data byte position, helping maintain data order.
• Acknowledgement Number: Confirms the next sequence number expected by the receiver.
• Data Offset: Marks the beginning of data within the segment.
• Reserved: For future use.
• URG: Indicates urgent data.
• ACK: Acknowledgement field indicator.

https://www.geeksforgeeks.org/tcp-ip-model/
https://www.geeksforgeeks.org/open-systems-interconnection-model-osi/
https://www.geeksforgeeks.org/transport-layer-in-osi-model/
https://www.geeksforgeeks.org/application-layer-in-osi-model/
https://www.geeksforgeeks.org/network-layer-in-osi-model/
https://www.geeksforgeeks.org/what-is-internet-protocol-ip/

OFFENSO HACKERS ACADEMY 46

Three Way Handshake

Three-way handshake is one of the techniques by the TCP/IP network to establish a connection
between a local host/client and a server. This technique consists of three steps which require both the
server and client to interchange ACK and SYN before the beginning of data communication.

Steps in the 3-Way Handshake:

SYN (Synchronize):

• The client sends a SYN (synchronize) packet to the server.
• This packet indicates that the client wants to establish a connection and includes an

initial sequence number (ISN) for tracking data packets.

Example:
Client → Server: "I want to connect. My sequence number is X."

SYN-ACK (Synchronize-Acknowledge):

• The server responds with a SYN-ACK packet.
• The SYN part indicates the server's willingness to establish the connection, and it

includes the server's initial sequence number (ISN).
• The ACK part acknowledges the client's SYN request by incrementing the client's

sequence number by 1.

Example:
Server → Client: "Acknowledged your request (X+1). My sequence number is Y."

ACK (Acknowledge):

• The client sends an ACK packet back to the server.
• This acknowledges the server's SYN-ACK and completes the handshake.
• From here, both the client and server are ready to exchange data.

Example:
Client → Server: "Acknowledged your sequence number (Y+1)."

OFFENSO HACKERS ACADEMY 47

2.7. UDP (User Datagram Packet)

UDP stands for User Datagram Protocol and is primarily used for sending messages without the need
for a confirmation from the receiver. User Datagram Protocol (UDP) is a Transport Layer protocol.
UDP is a part of the Internet Protocol suite, referred to as UDP/IP suite. Unlike TCP, it is an unreliable
and connectionless protocol. So, there is no need to establish a connection before data transfer. The
UDP helps to establish low-latency and loss-tolerating connections over the network. The UDP
enables process-to-process communication.

• Benefits and Use Cases: Unlike TCP, UDP does not establish a connection or wait for
acknowledgment, which allows it to transmit data faster. This makes it ideal for real-time
applications where speed is essential, such as VoIP and other applications that cannot afford
delays.

• Functionality: UDP is lightweight and provides efficient data transfer. It does not guarantee
that data packets will arrive or be received in the correct order, but it is suitable for
applications where reliability can be sacrificed for speed.

• Comparison with TCP: While TCP provides reliable data transfer with acknowledgment, UDP
is often preferred for tasks that need quicker transmission times and can handle potential
packet loss.

How UDP Works:

• The sender transmits data packets directly to receiver to establishing a connection.
• Each Packet includes:

o Source and destination ports.
o A length fields.
o A checksum for basic error detection.

• The receiver processes the packets as they arrive but does not send acknowledgments.

OFFENSO HACKERS ACADEMY 48

Application of TCP

• Web Browsing (HTTP/HTTPS):
E.g., Google, Facebook, Amazon, Wikipedia.

• File Transfer (FTP/SFTP):
E.g., Transferring files between devices, uploading/downloading large files.

• Email Communication (SMTP, IMAP, POP3):
E.g., Gmail, Outlook, Yahoo Mail.

• Remote Access (SSH, Telnet):
E.g., Managing servers or devices remotely using SSH.

• File Sharing (SMB, NFS):
E.g., Shared drives in offices, network-attached storage (NAS).

• Database Communication:
E.g., Applications accessing MySQL, PostgreSQL, Oracle databases.

• Online Banking and E-Commerce:
E.g., PayPal, Amazon, online payment gateways.

• Peer-to-Peer File Sharing:
E.g., BitTorrent, file-sharing networks.

• Online Applications:
E.g., Slack, Microsoft Teams, Google Meet (for signaling).

• Multiplayer Online Games (TCP for matchmaking):
E.g., League of Legends, Dota 2 (for reliable matchmaking and data sync).

Application of UDP

• Streaming Media (audio/video): E.g., YouTube, Netflix, Zoom.
• Online Gaming: Where delays can ruin the experience.
• DNS (Domain Name System): For fast domain resolution.
• VoIP (Voice over IP): For real-time voice communication.
• Broadcast and Multicast: Sending data to multiple receivers.

TCP VS UDP

TCP UDP
Connection oriented protocol Connection less

https, http, telnet, ftp VOIP, Video streaming, DHCP,
SNMP

High reliability Low reliability
Speed is lower than UDP Faster

There is absolute guarantee in data
transfer

There is no guarantee

Header size 20 bytes Header size is 8 bites
Heavy size Light weight protocol

TCP does flow control, error
checking

Does have an option for flow control

OFFENSO HACKERS ACADEMY 49

2.8. FIREWALL

A firewall is a security system designed to monitor and control incoming and outgoing network traffic
based on predetermined security rules. Essentially, it acts as a barrier between a trusted internal
network and untrusted external networks, such as the internet. Firewalls are one of the key
components in securing networks, preventing unauthorized access, and mitigating various types of
cyberattacks.

Firewalls can be implemented as either hardware or software (or a combination of both) and are
deployed in various configurations depending on the needs of the network.

2.8.1. Purpose of Firewalls

The main objectives of a firewall are:

• Traffic Filtering: The firewall filters network traffic based on IP addresses, ports, protocols, and
other criteria to allow or block access.

• Prevent Unauthorized Access: A firewall blocks unauthorized or malicious access to the
internal network, helping to protect sensitive data.

• Monitor Traffic: Firewalls log network traffic and alert administrators to suspicious activity.
• Enforce Security Policies: They enforce rules for acceptable traffic based on security policies,

like which types of connections are allowed and from where.
• Provide Network Segmentation: Firewalls can be used to divide the network into sub-

networks, limiting access between them (e.g., separating the internal network from the DMZ).

OFFENSO HACKERS ACADEMY 50

2.8.2. Types of Firewalls

• Packet-Filtering Firewalls
How it Works: The simplest type of firewall, packet-filtering firewalls inspect packets of data
(network packets) and determine whether to allow or block them based on predefined rules.
Rules are often based on IP addresses, port numbers, and protocols (TCP, UDP).
Advantages: Lightweight and fast. Works at the network layer (Layer 3) and transport layer
(Layer 4) of the OSI model.

• Stateful Inspection Firewalls
How it Works: Stateful firewalls monitor the state of active connections and make decisions
based on the context of the traffic (e.g., whether a packet is part of an existing, legitimate
connection). Unlike packet-filtering firewalls, stateful firewalls track the state of a connection.
Advantages: More secure than packet-filtering firewalls.
Can track the state of connections (e.g., SYN, ACK).

• Proxy Firewalls (Application-Level Gateways)
How it Works: Proxy firewalls act as intermediaries between the user and the service they
want to access. They inspect the application-level traffic, such as HTTP, FTP, DNS, and more.
A proxy firewall performs deep packet inspection (DPI) to understand the content of traffic,
making it more secure than stateful inspection.
Advantages: Very secure since they inspect traffic at the application layer (Layer 7 of the OSI
model).
Can prevent certain types of attacks (e.g., malware delivery via HTTP).
Often can cache content (e.g., web pages) to improve performance.

• Web Application Firewalls (WAF)
How it Works: WAFs specifically protect web applications by filtering and monitoring HTTP
traffic. They protect against web-based attacks like SQL injection, cross-site scripting (XSS),
and other OWASP Top 10 threats.
Advantages: Tailored to protect web applications.
Can block specific attack patterns that target vulnerabilities in web applications.

2.8.3. Common Firewall Threats

• Spoofing: Attackers may spoof their IP address to bypass filters that only allow trusted
sources.

• Denial of Service (DoS): Attackers may try to overwhelm a firewall by flooding it with excessive
traffic.

• State Table Exhaustion: Attackers might attempt to flood the firewall with more connections
than it can handle, causing it to crash or become unresponsive.
Evasion Techniques: Techniques like fragmentation or tunneling (e.g., using HTTPS to bypass
restrictions on HTTP traffic) may bypass some firewalls.

OFFENSO HACKERS ACADEMY 51

2.9. VPN (Virtual Private Network)

A VPN (Virtual Private Network) is a technology that creates a secure, encrypted connection between
your device (computer, smartphone, tablet, etc.) and a server operated by a VPN provider. This
encrypted connection allows you to securely access the internet while protecting your privacy and
masking your IP address. VPNs are used to enhance online security, privacy, and anonymity, and to
bypass restrictions on internet access.

2.9.1. Functions of a VPN

• Privacy Protection: A VPN hides your IP address, making it more difficult for websites,
advertisers, or even your Internet Service Provider (ISP) to track your online activity.

• Encryption: VPNs encrypt your internet traffic, which protects sensitive information (like
passwords, credit card numbers, and personal data) from hackers or third parties.

• Bypassing Geo-Restrictions: VPNs allow users to access content that may be blocked in certain
regions, such as streaming services (Netflix, YouTube) or websites censored in certain
countries.

• Secure Remote Access: VPNs can be used by businesses to enable employees to securely
connect to a corporate network from remote locations.

OFFENSO HACKERS ACADEMY 52

2.9.2. Types of VPNs

• Remote Access VPN
Description: This type of VPN is used by individuals to connect to a private network (such as a
home or corporate network) from anywhere via the internet.
Use Case: Most commonly used by remote workers or users who need to access private
resources like files, emails, or intranet services while on the go.
Example: You can connect your laptop or smartphone to your home network securely while
traveling abroad.
Protocol Examples: OpenVPN, IKEv2, L2TP/IPSec, PPTP.

• Site-to-Site VPN

Description: Used by organizations to securely connect two or more different networks over
the internet. These networks could be different office locations or different parts of a
company’s network infrastructure.
Use Case: Businesses with multiple offices use Site-to-Site VPNs to securely link their networks
together, enabling employees in different locations to share resources and data securely.
Example: A company with offices in New York and London might use a Site-to-Site VPN to
allow employees in both locations to access the same files, applications, and servers.
Protocol Examples: IPsec, MPLS (Multiprotocol Label Switching).

• Client-to-Site VPN (also known as Remote Access VPN for business users)
Description: Similar to Remote Access VPNs, but specifically used by businesses to allow
remote employees to connect securely to a corporate network. The user connects to the VPN
server, which grants access to internal company resources.
Use Case: Employees working from home or traveling need secure access to their corporate
network. The company provides a VPN client (software) to install on their device.
Example: A company might provide a VPN connection for employees working remotely so they
can access company servers, internal documents, or email securely.

• Mobile VPN
Description: A special type of VPN designed for mobile devices. Mobile VPNs allow users to
stay connected to a VPN server even when switching between different types of networks
(e.g., from Wi-Fi to cellular data).
Use Case: Mobile users (such as salespeople or field workers) who need to maintain a stable
VPN connection while on the move. This is important for applications that require continuous
access to a private network.
Example: A mobile VPN would allow a field technician to connect to a corporate network while
driving, switching between Wi-Fi and cellular connections seamlessly.

• P2P VPN (Peer-to-Peer VPN)

Description: A P2P VPN allows users to share files or resources directly with each other over
the internet in a secure and private manner. This type of VPN often supports file-sharing
protocols such as torrents.
Use Case: Individuals who wish to share large files or download torrents securely and
anonymously often use a P2P VPN.
Example: Users who want to download torrents without exposing their IP address and encrypt
their connection for privacy.

OFFENSO HACKERS ACADEMY 53

• SSL VPN (Secure Sockets Layer VPN)
Description: An SSL VPN uses SSL (or TLS) to create a secure tunnel between the user’s device
and the VPN server. Unlike traditional VPNs, SSL VPNs usually don’t require special client
software and can often be accessed through a web browser.
Use Case: Businesses use SSL VPNs to give employees remote access to corporate networks,
especially in cases where a simple web portal is sufficient for accessing internal resources (like
email or databases).
Example: A user can log in to an SSL VPN through a web interface to access company resources
without needing to install a dedicated VPN client.

• MPLS VPN (Multiprotocol Label Switching VPN)
Description: MPLS is a type of Site-to-Site VPN used by large enterprises. It is a sophisticated
routing technique that allows for efficient data flow across a wide-area network (WAN).
Use Case: This is often used by large organizations to ensure secure and efficient data transfer
between their global offices. MPLS is ideal for businesses that require high-performance
networking.
Example: A multinational company with offices in multiple countries can use MPLS VPNs to
ensure secure, fast, and reliable data transfers between their offices.

OFFENSO HACKERS ACADEMY 54

Introduction To Pentesting
Penetration testing, or pentesting, is a simulated cyberattack aimed at identifying and exploiting
vulnerabilities in an organization's IT systems, networks, or applications. It helps evaluate the security
posture, uncover weaknesses, and provide recommendations to mitigate risks. Pentesting typically
involves reconnaissance, vulnerability scanning, exploitation, and reporting. It can be performed using
approaches like black-box, white-box, or gray-box testing, depending on the tester's access to system
information. This process ensures proactive risk management, enhances compliance with standards,
and strengthens defenses against real-world cyber threats, making it a crucial component of
cybersecurity strategies.

3.1 What is penetration testing

Penetration testing (pen testing) is a type of security testing where a simulated cyberattack is
conducted on a computer system, network, or web application to identify vulnerabilities that an
attacker could exploit. The goal of pen testing is to evaluate the security of the system by actively
trying to "penetrate" it, much like a hacker would, but in a controlled, ethical manner.

• Vulnerability Identification: The pentester looks for weaknesses in the system—such as
outdated software, misconfigurations, weak passwords, or exposed services—that could be
exploited by an attacker.

• Exploitation: After identifying vulnerabilities, the pentester attempts to exploit them to gain

unauthorized access or escalate privileges to demonstrate the potential impact of a real
attack.

• Post-exploitation: This involves maintaining access (if necessary), exploring the system

further, and identifying additional risks that may exist once an attacker gains access.

• Reporting: After the test, the pentester provides a detailed report with findings, including
identified vulnerabilities, the severity of each issue, and recommended actions for
remediation.

3.2 Types of Pentesting

OFFENSO HACKERS ACADEMY 55

3.2.1. Black Box Penetration Testing

In black box pentesting, the tester has no prior knowledge of the internal workings of the system
being tested. This simulates a real-world external attacker who does not have access to any internal
resources, documentation, or source code.

• The tester starts with publicly available information (open-source intelligence, OSINT) to
gather details about the target.

• The pentester needs to discover everything about the system through trial and error or using
automated tools.

Black box testing often focuses on external threats, such as attackers trying to gain
unauthorized access from the internet.

Advantages:

• Reflects real-world scenarios where attackers often have no insider information.
• Focuses on external vulnerabilities and misconfigurations that could be exploited by any

outsider.

3.2.2. White Box Penetration Testing

In white box pentesting, the tester has full knowledge of the target system, including its source code,
network infrastructure, and architecture. This type of testing is also known as clear-box testing or
glass-box testing.

• The tester has access to internal documentation, source code, architecture details, and
configurations, which allows for a deeper analysis.

• This type of testing aims to find flaws in the design and implementation of the system, such
as insecure code, misconfigurations, or poor practices in the development lifecycle.

• White box testing is typically used for internal applications or systems where the organization
wants a deep, exhaustive assessment of security.

Advantages:

• Detailed and comprehensive security assessment since the tester has full knowledge of the
system.

• Helps identify vulnerabilities in code, design flaws, and weak security controls that might not
be obvious in black box testing.

3.2.3. Gray Box Penetration Testing

It is a hybrid approach where the tester has partial knowledge of the system. This can include limited
information such as user credentials, access to some internal documentation, or basic network
configurations.

• The tester might have information such as user roles, limited system access (e.g., internal
network), or knowledge of certain internal applications.

• Gray box testing is designed to simulate an attacker who has gained some level of insider
access (e.g., a user with low-level access or an employee who has been compromised).

• The tester can focus on escalating privileges, exploiting existing access, or searching for
deeper vulnerabilities within the internal network.

OFFENSO HACKERS ACADEMY 56

Advantages:

• Balances the scope between black and white box testing, offering a more realistic scenario of
a real-world attack.

• Can provide insight into how a system could be attacked by an attacker with partial access or
knowledge.

3.3 Pentesting Methodology

3.3.1. Information Gathering (Reconnaissance)

Collect as much information as possible about the target to identify potential attack vectors.

Techniques:

• Passive Reconnaissance: Gather publicly available information without interacting with the
target system (e.g., WHOIS records, DNS lookups, social media analysis, etc.).

• Active Reconnaissance: Directly interact with the target system to gather data about open
ports, services, and systems (e.g., port scanning, service fingerprinting).

Tools: WHOIS, Shodan, Google Dorks, Netcat, Nmap, Recon-ng.

Output: A list of target systems, services, open ports, and possible weak points in the network
infrastructure.

OFFENSO HACKERS ACADEMY 57

3.3.2. Vulnerability Analysis

Identify known vulnerabilities in the target environment by scanning for weaknesses in systems,
services, and configurations.

Techniques:

• Vulnerability Scanning: Use automated tools to identify vulnerabilities in the system, services,
or software being tested (e.g., outdated software, open ports, insecure configurations).

• Manual Inspection: Analyze the results from automated tools and manually investigate
complex vulnerabilities, false positives, or issues that scanners may miss.

• Software/Service Identification: Identify software versions, operating systems, and services
running on the system to determine whether they are vulnerable to known exploits.

Tools: Nessus, Qualys, OpenVAS, Nikto, Burp Suite, OWASP ZAP.

Output: A list of identified vulnerabilities, their severity, and recommendations for remediation.

3.3.3 Exploitation

Attempt to exploit the vulnerabilities identified in the previous stage to determine their potential
impact and gain unauthorized access to systems or data.

Techniques:

• Exploiting Vulnerabilities: Attempting to leverage vulnerabilities like SQL injection, buffer
overflows, or misconfigurations to gain access to the system.

• Web Application Exploits: Exploit common web application vulnerabilities like Cross-Site
Scripting (XSS), Cross-Site Request Forgery (CSRF), or Remote Code Execution (RCE).

• Password Cracking: Using brute force, dictionary, or rainbow table techniques to crack weak
passwords or password hashes.

• Command Injection: Exploiting input validation issues to execute arbitrary commands on the
target system.

Tools: Metasploit, Exploit-db, SQLmap, Hydra, John the Ripper, Burp Suite.

Output: A report detailing the vulnerabilities exploited, the access gained, and the level of compromise
achieved.

3.3.4. Post-Exploitation

Once access is obtained, further explore the system to assess the extent of compromise, escalate
privileges, and gather valuable information.

Techniques:

Privilege Escalation: Attempt to escalate user privileges (e.g., from a regular user to an administrator)
by exploiting misconfigurations or vulnerabilities.

• Persistence: Establish a backdoor or create new user accounts to maintain access after the
test ends or after the initial vulnerabilities are patched.

OFFENSO HACKERS ACADEMY 58

• Data Exfiltration: Simulate exfiltrating sensitive data such as passwords, credit card numbers,
or intellectual property to assess the impact of a data breach.

• Lateral Movement: Move across the network to other systems, escalating access and
gathering further intelligence.

Tools: Mimikatz (for credential dumping on Windows systems), Netcat, Empire, PowerShell, LinPEAS
(Linux privilege escalation).

Output: An assessment of the attacker’s ability to maintain access, escalate privileges, or exfiltrate
data. Report on the effectiveness of security measures in limiting attacker movement.

3.3.5. Reporting

Document and report the findings of the pentest, including vulnerabilities discovered, exploited, and
their potential impact on the organization.

Key Elements:

• Executive Summary: High-level overview for non-technical stakeholders, summarizing the
test's purpose, scope, and major findings.

• Detailed Findings: A thorough breakdown of the vulnerabilities identified, the testing methods
used, and how they were exploited (e.g., screenshots, logs, and code snippets).

• Severity Ratings: Categorize the vulnerabilities based on their severity (e.g., Critical, High,
Medium, Low).

• Recommendations: Provide remediation suggestions, such as patching vulnerable software,
changing configurations, or improving network segmentation.

• Risk Assessment: Analyze the risk posed by the identified vulnerabilities and prioritize
remediation actions.

Output: A comprehensive pentesting report, often including a risk assessment and remediation
guidance.

3.3.6. Remediation and Retesting

After the pentest report is delivered, the organization addresses the identified vulnerabilities. A retest
may be conducted to verify that the vulnerabilities have been remediated.

Techniques:

• Fixing Identified Vulnerabilities: Organizations should patch systems, update software,
reconfigure systems, or apply additional security controls based on pentest findings.

• Retesting: A second round of testing may be conducted to ensure that the fixes were effective
and that no new vulnerabilities have been introduced.

Output: Confirmation that remediation efforts were successful and that security weaknesses have
been addressed. A retesting report, validating the effectiveness of applied fixes.

OFFENSO HACKERS ACADEMY 59

3.4 Pentesting Tools Overview

3.4.1: Information Gathering Tools

Nmap (Network Mapper)

Nmap is a powerful, open-source tool used for network discovery, security auditing, and vulnerability
scanning. Originally designed by Gordon "Fyodor" Lyon in 1997, Nmap has become one of the most
popular tools in network security, penetration testing, and system administration. It is widely used by
network administrators, security professionals, and penetration testers to map out networks, identify
open ports, discover services running on hosts, and detect vulnerabilities.

OFFENSO HACKERS ACADEMY 60

Features of Nmap
• Network Discovery
• Port Scanning
• Service and Version Detection
• Operating System Detection
• Vulnerability Scanning
• Scripting and Automation (Nmap Scripting Engine - NSE)
• Firewall/Intrusion Detection Evasion

Basic Nmap Syntax

The basic syntax for Nmap: nmap [Scan Type(s)] [Options] {Target}

Common Nmap Commands and Options

• Simple Ping Sweep:

This command discovers which hosts are alive on the network by sending ICMP echo requests

nmap -sn 192.168.1.0/24

• TCP SYN Scan (Stealth Scan):
A SYN scan is the most popular scan type and is considered stealthy because it doesn't

complete the full TCP handshake.

nmap -sS 192.168.1.1

• Full TCP Connect Scan

A connect scan completes the full TCP handshake and is useful when SYN scans are blocked
by firewalls.

nmap -sT 192.168.1.1

• Service Version Detection

Nmap attempts to determine the version of services running on open ports.

nmap -sV 192.168.1.1

• Operating System Detection

Nmap attempts to identify the operating system of a target.

nmap -O 192.168.1.1

• Scanning Specific Ports

To scan specific ports, you can use the -p option to specify port ranges.

nmap -p 22,80,443 192.168.1.1

OFFENSO HACKERS ACADEMY 61

• Aggressive Scan

The aggressive scan (-A) performs OS detection, version detection, script scanning, and
traceroute.

nmap -A 192.168.1.1

• Scan Multiple Hosts

You can scan multiple hosts by specifying a range or list.

nmap 192.168.1.1 192.168.1.2 nmap 192.168.1.1-10

• Scan a Range of IPs:

Nmap can scan a range of IPs for network discovery.

Scan a Range of IPs:

nmap 192.168.1.1-50

Maltego

Maltego is an open-source intelligence (OSINT) and forensics tool that specializes in gathering,
analyzing, and visualizing data from a variety of public sources. It's used for investigating and mapping
relationships between people, groups, websites, domains, and infrastructure, making it popular in
cybersecurity and investigative contexts.

Features: Generates graphs showing relationships between domains, IPs, email addresses, and more.

Best For: OSINT (Open-Source Intelligence) activities.

OFFENSO HACKERS ACADEMY 62

Shodan

Shodan is a search engine that indexes internet-connected devices. Unlike typical search engines that
index web pages, Shodan scans and indexes devices (such as servers, webcams, routers, and industrial
control systems) that are publicly accessible via the internet.

Features: Finds servers, webcams, IoT devices, and more by scanning the internet.

Example Query: apache country:US lists Apache servers in the US.

Whois

Whois is a query and response protocol used to retrieve registration information about domain names
and IP addresses. It provides valuable details about the ownership, status, and registration history of
domain names, often used in legal, business, or investigative contexts.

Features: Domain Registration Information, IP Address Information

OFFENSO HACKERS ACADEMY 63

DNS Tools

DNS (Domain Name System) tools are used for gathering information about domain names, DNS
records, and the DNS infrastructure associated with websites and networks. These tools are essential
for network administrators, penetration testers, and security professionals.

Features DNS Lookup, Reverse DNS Lookup: Provides the domain name associated with a given IP
address.

3.4.2. Vulnerability Scanning Tools

These tools automate the process of finding vulnerabilities in networks, systems, and applications.

Nessus

Purpose: Comprehensive vulnerability scanning for networks and applications.
Features: Includes plugins to detect a wide range of vulnerabilities, misconfigurations, and policy
violations.

OFFENSO HACKERS ACADEMY 64

OpenVAS (Open Vulnerability Assessment System)

Purpose: Open-source vulnerability management.
Features: Scans for common vulnerabilities (CVEs) and generates detailed reports.
Strength: Supports custom scans for specific systems.

Qualys

Purpose: Cloud-based vulnerability scanning and management.
Features: Integration with compliance management and policy enforcement.

3.4.3. Exploitation Tools

Exploitation tools allow penetration testers to validate identified vulnerabilities by exploiting them.

Metasploit Framework

Purpose: A framework for developing and executing exploits.
Features: Exploit database for various vulnerabilities. Auxiliary modules for scanning and post-
exploitation.
Example: msfconsole launches the interactive console.

SQLmap

Purpose: Automates the detection and exploitation of SQL injection vulnerabilities.

Features: Supports database dumping. Can crack passwords from hashes.
Example: sqlmap -u "http://example.com?id=1" --dbs retrieves databases.

http://example.com/?id=1

OFFENSO HACKERS ACADEMY 65

BeEF (Browser Exploitation Framework)

Purpose: Focused on exploiting browser vulnerabilities.
Use Case: Captures browser sessions, injects malicious scripts, and gains control of browsers.

3.4.4. Web Application Pentesting Tools

These tools specialize in identifying and exploiting vulnerabilities in web applications.

Burp Suite

Purpose: A comprehensive platform for web application security testing.
Features: Proxy for intercepting traffic. Active and passive scanning modules. Extensions through the
BApp store.
Use Case: Detects vulnerabilities like XSS, SQLi, and CSRF.

OWASP ZAP (Zed Attack Proxy)

Purpose: Open-source web application security scanner.
Features: Automated spidering to find hidden links. API testing capabilities.

Nikto

Purpose: Scans web servers for vulnerabilities and outdated configurations.
Strengths: Lightweight and fast for surface-level testing.

OFFENSO HACKERS ACADEMY 66

3.4.5. Password Cracking Tools

Password cracking tools test password strength and recover credentials.

John the Ripper

Purpose: A versatile password cracker supporting multiple formats.
Strengths: Brute-force, dictionary, and hybrid attacks.

Hashcat

Purpose: Advanced password recovery.
Features: GPU-based cracking for speed.
Supports: MD5, SHA1, NTLM, and more.

Hydra

Purpose: Brute-force login credentials for various protocols (SSH, FTP, HTTP).
Example: hydra -l admin -P passwords.txt ftp://192.168.1.1 attempts password cracking on FTP.

OFFENSO HACKERS ACADEMY 67

3.4.6. Wireless Network Pentesting Tools

Focused on wireless security assessment, including WEP, WPA/WPA2 cracking.

Aircrack-ng

Purpose: Cracks WEP and WPA-PSK keys.
Features: Includes tools for packet capturing and replay attacks.

Wireshark

Purpose: Captures and analyzes network traffic.
Strength: Decodes numerous protocols for in-depth analysis.

Kismet

Purpose: Detects wireless networks and captures traffic.
Features: Works passively to avoid detection.

OFFENSO HACKERS ACADEMY 68

3.4.7. Mobile Application Pentesting Tools

Used to evaluate the security of Android and iOS applications.

MobSF (Mobile Security Framework)

Purpose: Automates static and dynamic analysis of mobile apps.
Features: Detects insecure permissions, APIs, and configurations.

Frida

Purpose: Dynamic instrumentation for reverse engineering.
Use Case: Tests app behavior during runtime.

3.4.8. API Pentesting Tools

Focus on analyzing and testing API endpoints for vulnerabilities.

Drozer

Purpose: Security assessment framework for Android.
Features: Identifies app vulnerabilities like insecure components.

OFFENSO HACKERS ACADEMY 69

Postman

Purpose: Simplifies crafting and testing API requests.
Features: Automates testing workflows with scripts.

Insomnia

Purpose: API client for designing and debugging endpoints.
Features: Supports authentication methods like OAuth.

Burp Suite (API Mode)

Use Case: Intercepts and tests API traffic for vulnerabilities.

OFFENSO HACKERS ACADEMY 70

3.4.9. Active Directory Pentesting Tools

Active Directory is a critical target during network pentests. These tools analyze AD security and
identify privilege escalation paths.

BloodHound

Purpose: Visualizes AD trust relationships and privilege escalation paths.

Impacket

Purpose: Executes network protocol-based attacks.
Examples: SMB relay, Kerberos attacks.

Mimikatz

Purpose: Dumps plaintext passwords, hashes, and Kerberos tickets.

OFFENSO HACKERS ACADEMY 71

Network Pentesting
Network Penetration Testing (Network Pentesting) refers to the process of simulating an attack on a
network infrastructure to identify security vulnerabilities that could be exploited by malicious actors.
It is an essential practice for assessing the security posture of an organization's network and its
defenses. The goal of network pentesting is to discover weaknesses before attackers can exploit them,
and to ensure that the network can resist or respond to various forms of cyberattacks.

4.1. Network Pentesting

4.1.1. Steps in Network Penetration Testing

Reconnaissance (Information Gathering)

Passive Reconnaissance: Gathering information without directly interacting with the target. This can
include searching public records, social media, DNS records, and WHOIS databases to gather details
about the target's network.
Active Reconnaissance: Interacting with the target network to identify live systems, IP addresses, and
open ports, often using tools like Nmap or Netcat.

Scanning

Port Scanning: Identifying open ports and services that are running on the network. This is crucial for
understanding possible points of entry.
Vulnerability Scanning: Using automated tools like Nessus, OpenVAS, or Qualys to scan for known
vulnerabilities in the network’s devices and services.

Exploitation

After identifying vulnerabilities, pentesters attempt to exploit them to gain unauthorized access to
systems. This phase simulates what a real attacker might do, attempting to use vulnerabilities in
services, misconfigurations, or weak credentials.

OFFENSO HACKERS ACADEMY 72

Post-Exploitation

Privilege Escalation: Once access is gained, pentesters try to elevate their privileges (e.g., from a user
to an administrator) to gain more control over the network.
Pivoting: Using compromised systems to access other parts of the network that were initially
unreachable.
Data Exfiltration: Simulating the theft of sensitive data to assess the extent of damage an attacker
could cause.

Reporting

The pentester documents all findings, including discovered vulnerabilities, exploited weaknesses, and
recommendations for mitigation. This report often includes technical details, risk assessments, and
remediation strategies.

4.1.2. Common Tools Used in Network Pentesting

• Nmap: For network discovery and vulnerability scanning.
• Wireshark: For network traffic analysis.
• Metasploit: A widely-used framework for developing and executing exploit code against a

remote target.

• Burp Suite: A tool for web application pentesting, often used to test web-related
vulnerabilities.

• Aircrack-ng: Used for testing the security of wireless networks.
• Netcat: A versatile tool for creating network connections and testing them.
• John the Ripper: For cracking weak passwords and testing the strength of password hashes.

4.1.3. Types of Network Pentesting

• Black Box Testing: The pentester has no prior knowledge of the network or its infrastructure,
simulating an external attacker.

• White Box Testing: The pentester has full knowledge of the network, such as internal
documentation, configurations, and source code. This simulates an insider threat or a highly
motivated attacker with advanced knowledge.

• Gray Box Testing: The pentester has limited knowledge about the network, representing a
scenario where an attacker has some internal knowledge but is not fully trusted.

4.1.4. Security Risks Identified in Network Pentesting

• Misconfigured Firewalls and Routers: Weak or improper configurations can allow
unauthorized traffic to bypass security controls.

• Outdated Software: Unpatched or unsupported software is a prime target for exploitation.
• Weak Passwords: Passwords that are easy to guess or crack can provide an attacker with easy

access to systems.
• Unsecured Wireless Networks: Open or poorly configured Wi-Fi networks can allow attackers

to intercept data or launch attacks.
• Lack of Network Segmentation: Poor segmentation can allow attackers to move laterally

within a network once inside.

OFFENSO HACKERS ACADEMY 73

4.2. Network Scanning Techniques

Network scanning is a critical process in network security that helps identify active devices, open ports,
running services, and potential vulnerabilities in a network. The primary goal is to map out a network's
infrastructure, discover systems, and detect potential security weaknesses. There are several
techniques and approaches used in network scanning, each serving different purposes depending on
the scope of the assessment.

Ping Sweep (ICMP Sweep)

Description: A ping sweep is a basic technique used to identify live hosts on a network by sending
ICMP (Internet Control Message Protocol) echo requests to multiple IP addresses. A response
indicates that a device is active and reachable.
Use Case: Typically used in the reconnaissance phase to quickly discover which devices are up and
responsive in a given network range.
Tool Examples: fping, nmap -sn, ping.
Example Command (Nmap): nmap -sn 192.168.1.0/24

OFFENSO HACKERS ACADEMY 74

Port Scanning

Description: Port scanning involves sending requests to a range of ports on a target machine to
determine which ports are open or closed. This helps identify the services running on the target
machine.

Types of Port Scanning:

• TCP Connect Scan: Attempts to complete the full TCP handshake (most reliable but
detectable).

• SYN Scan (Half-Open Scan): Sends SYN packets and waits for responses, more stealthy as it
doesn’t complete the TCP handshake.

• UDP Scan: Scans for open UDP ports (more difficult to scan due to lack of response from closed
ports).

• FIN Scan: Sends a FIN packet, which can sometimes bypass firewalls or packet filters.

Use Case: Helps in discovering which services are exposed on a device and which ones might be
vulnerable.
Tool Examples: nmap, masscan.
Example Command (Nmap for TCP SYN scan): nmap -sS 192.168.1.10

Service Version Scanning

Description: Once open ports are identified, version scanning determines the specific versions of
services (such as web servers, FTP, SSH, etc.) running on those ports. This is helpful for identifying
known vulnerabilities in specific software versions.

Use Case: Helps identify outdated or vulnerable software versions running on open ports.
Tool Examples: nmap, Netcat, Nessus.
Example Command (Nmap): nmap -sV 192.168.1.10

OFFENSO HACKERS ACADEMY 75

OS Fingerprinting

Description: OS fingerprinting is the process of identifying the operating system running on a target
machine by analyzing network responses, such as TCP/IP stack behavior and response times. This can
provide information on whether the system is running Windows, Linux, or a specific version of an OS.

Working:

Use Case: Useful for determining the target's underlying platform and adjusting attack strategies
based on that OS.
Tool Examples: nmap, p0f.
Example Command (Nmap): nmap -O 192.168.1.10

Vulnerability Scanning

Description: This technique involves scanning a system or network for known vulnerabilities in
services, configurations, or software. Vulnerability scanners check for outdated software versions,
misconfigurations, missing patches, and common exploits.

Use Case: To identify weaknesses in systems that could be exploited by attackers.
Tool Examples: Nessus, OpenVAS, Qualys, Nmap with NSE (Nmap Scripting Engine).
Example Tool (Nessus): Nessus automatically scans for vulnerabilities based on a large database of
known vulnerabilities and suggests remediation steps.

OFFENSO HACKERS ACADEMY 76

Banner Grabbing

Description: Banner grabbing involves sending a simple request to a service on an open port (e.g.,
HTTP or FTP) and analyzing the returned response. This often includes version numbers, software
names, and other identifying information.

Use Case: Helps identify the services running and their versions, which can be useful for identifying
vulnerabilities.
Tool Examples: Netcat, Telnet, nmap.
Example Command (Netcat):
nc -v 192.168.1.10 80

TCP/IP Stack Fingerprinting

Description: TCP/IP stack fingerprinting involves analyzing how a system responds to specific types of
network traffic (TCP flags, packet order, etc.) to infer characteristics of the target operating system.
This is typically done by comparing the behavior to a database of known OS responses.

Use Case: Used for identifying the target system’s operating system with high accuracy, often when
standard OS detection techniques fail.
Tool Examples: p0f, nmap.

OFFENSO HACKERS ACADEMY 77

DNS Zone Transfer

Description: A DNS zone transfer is a type of attack where an attacker requests a copy of the entire
DNS database from a DNS server. If the server is misconfigured to allow zone transfers, this can reveal
valuable information about the target network, including hostnames, IP addresses, and subnets.

Use Case: Identifying DNS configurations and gathering information about the network infrastructure.
Tool Examples: dig, nslookup, fierce.
Example Command (dig): dig @dns-server example.com AXFR

SNMP Scanning

Description: Simple Network Management Protocol (SNMP) scanning is used to query SNMP-enabled
devices (like routers, switches, printers, and networked servers) for information such as device
configuration, network statistics, and vulnerabilities.

Use Case: Helps enumerate network devices and gather potentially sensitive information from them.
Tool Examples: snmpwalk, snmpcheck.
Example Command (Snmpwalk): snmpwalk -v 2c -c public 192.168.1.10

OFFENSO HACKERS ACADEMY 78

ARP Scanning

Description: ARP (Address Resolution Protocol) scanning involves sending ARP requests within a local
network to discover live hosts and map out the network. It’s a quick way to identify devices without
generating a lot of noise.

Use Case: Typically used in local area network (LAN) environments where devices communicate with
each other over Ethernet.
Tool Examples: arp-scan, nmap.
Example Command (arp-scan): arp-scan 192.168.1.0/24

OFFENSO HACKERS ACADEMY 79

4.3. Enumeration And Vulnerability Analysis

Enumeration and Vulnerability Analysis in Network Scanning are key components of network security
assessments, often performed during penetration testing, ethical hacking, and vulnerability
assessments. Here's an overview of both concepts and how they fit into network scanning:

4.3.1. Enumeration in Network Scanning

Enumeration is the process of actively gathering detailed information about a target system or
network. It’s a more advanced step following network discovery (such as a ping sweep or port scan),
and typically involves the identification of:
Network shares: Access control lists (ACLs), file shares, and resources exposed to the network.
Users: Usernames, group memberships, and service accounts.
Services: Services running on specific machines, including version numbers.
Operating Systems: The OS version or other identifying details about the system.
SNMP Information: Using Simple Network Management Protocol (SNMP) to extract details about
devices (routers, switches, etc.).
DNS Information: Extracting domain-related data, such as subdomains, DNS records, and
internal/external domain structure.
Enumeration is usually achieved by using specific tools like:

• Nmap (using scripts for enumeration).
• Netcat.
• Enum4linux (for enumerating information from Windows systems).
• SMBclient (for accessing shared resources).
• SNMPwalk (for extracting SNMP data).

4.3.2. Vulnerability Analysis in Network Scanning

Vulnerability analysis is the process of identifying weaknesses, flaws, or misconfigurations in a
network or system that could be exploited by an attacker. In the context of network scanning, this
involves:

Identifying known vulnerabilities: Checking systems for known security flaws, outdated software,
misconfigurations, or weak points that could be exploited. This is often done by comparing the
system’s characteristics (e.g., software versions, open ports) against a database of known
vulnerabilities.
Scanning for weak spots: Using specialized tools to identify weaknesses in protocols, services, and
configurations.
Risk Assessment: Evaluating the potential impact of vulnerabilities by assessing the likelihood of
exploitation and the severity of the damage it could cause.

Common tools used for vulnerability analysis include:

• Nessus: A widely used vulnerability scanner that detects vulnerabilities in operating systems,
applications, and configurations.

• OpenVAS: An open-source tool for scanning and identifying vulnerabilities.
• Qualys: A cloud-based vulnerability management platform.
• Nmap with NSE (Nmap Scripting Engine): For custom vulnerability scanning with scripts.

OFFENSO HACKERS ACADEMY 80

4.3.3. Steps Involved in Network Scanning for Enumeration and Vulnerability Analysis:

Initial Reconnaissance:

4.3.4.
• Passive Reconnaissance: Gathering information without interacting directly with the target,

like reviewing publicly available information (whois, domain records, public IP addresses).

• Active Reconnaissance: Scanning and probing the target for more detailed information.
Network Scanning (Discovery Phase):

• Ping Sweep: Identifying live hosts in the network.
• Port Scanning: Detecting open ports on a target system (using tools like Nmap).
• Service Enumeration: Identifying services running on open ports (e.g., HTTP, FTP, SSH, SMB)

and their versions.
Enumeration:

• Enumerate usernames, group memberships, network shares, SNMP data, etc.
• Look for misconfigurations or potential entry points.

Vulnerability Scanning:
• Scan identified services for known vulnerabilities.
• Compare service versions against a vulnerability database.
• Assess the system’s security configurations for weaknesses.

Analysis and Reporting:
• After scanning and analysis, the vulnerabilities and findings are compiled into a report with

risk ratings (Critical, High, Medium, Low).
• Recommendations for mitigating vulnerabilities are provided.

4.3.5. Common Vulnerabilities Identified During Network Scanning

Unpatched Software: Exploitable flaws in outdated software versions.
Misconfigurations: Incorrect settings in services, network devices, or firewalls.
Weak Passwords: Easily guessable or common passwords that can be exploited.
Open Ports: Unnecessary open ports that may allow unauthorized access to services.
Missing Security Controls: Lack of encryption, weak authentication mechanisms, or inadequate
logging.

Best Practices for Enumeration and Vulnerability Analysis:

• Stay Updated: Ensure scanning tools and vulnerability databases are up-to-date to accurately
detect known vulnerabilities.

• Use Multiple Tools: Use a variety of tools for enumeration and vulnerability scanning to cross-
check results.

• Minimize Detection: In a penetration testing scenario, consider stealthy scanning techniques
to avoid detection by intrusion detection/prevention systems (IDS/IPS).

• Prioritize Vulnerabilities: After identifying vulnerabilities, prioritize them based on their
potential impact and exploitability.

OFFENSO HACKERS ACADEMY 81

4.4. Network Exploitation Basics

Exploitation in network security refers to the act of taking advantage of a vulnerability in a network or
system to gain unauthorized access or perform malicious activities. It's the phase where an attacker
uses the weaknesses discovered during a penetration test or vulnerability assessment to breach the
system. The goal is often to demonstrate the practical impact of a vulnerability, but exploitation can
also be used by cybercriminals to gain control, steal data, or disrupt operations.
Stages of Exploitation in Network Security
Exploitation typically follows a systematic approach after identifying vulnerabilities.

4.4.1. Steps for Exploitation

Reconnaissance (Pre-exploitation)

Gathering information about the target network, such as IP addresses, domain names, open ports,
services running, and system details.
Tools: Nmap, Wireshark, Netcat, Shodan.

Vulnerability Identification

Scanning the network or system for vulnerabilities using automated tools or manual techniques.
Tools: Nessus, OpenVAS, Qualys, Nmap (for service enumeration and version detection).
Weaponization

After identifying a vulnerability, the attacker prepares an exploit. This can be in the form of custom
code, scripts, or use of publicly available exploit tools.

Common Techniques:

• Buffer Overflow: An attacker sends more data to a program's buffer than it can handle, causing
the program to crash or enabling the execution of arbitrary code.

• SQL Injection: Injecting malicious SQL code into a vulnerable database query to execute
unauthorized commands.

• Cross-Site Scripting (XSS): Embedding malicious scripts in web pages viewed by others,
enabling an attacker to steal cookies or session tokens.

Exploitation

Exploitation happens when the attacker successfully uses the exploit to compromise a target system.
Goal: Gain unauthorized access to the system, steal sensitive information, or execute commands on
the affected system.

OFFENSO HACKERS ACADEMY 82

4.4.2. Types of Exploitation in Network Security

Remote Code Execution (RCE)

What It Is: The attacker gains the ability to execute arbitrary commands or code on a remote system.
Example: Exploiting a web application vulnerability to upload a reverse shell that connects back to the
attacker.

Common Vulnerabilities: Unpatched software, insecure remote services, or vulnerable web
applications.
Tools: Metasploit, Cobalt Strike, Impacket.

OFFENSO HACKERS ACADEMY 83

Privilege Escalation

What It Is: Gaining higher-level permissions (administrator/root) once initial access is achieved,
allowing broader control over the system.
Example: After gaining user-level access, the attacker exploits a misconfigured privilege to gain root
access on a Unix system or Administrator rights on Windows.
Common Vulnerabilities: Poorly configured permissions, weak passwords, unpatched kernel
vulnerabilities.
Tools: Mimikatz (for Windows), LinPEAS (for Linux).

Denial of Service (DoS) / Distributed Denial of Service (DDoS)

What It Is: Overwhelming a network or system with traffic to make it unavailable to users.
Example: Exploiting a vulnerability that allows an attacker to flood a target with traffic, causing a crash.
Common Vulnerabilities: Weak network architecture, unprotected network services.
Tools: LOIC, Hping, Slowloris.

Web Application Exploitation

What It Is: Exploiting vulnerabilities in web applications to gain access to the underlying system or
data.
Examples:

• SQL Injection: Attacker inserts malicious SQL queries into user inputs to manipulate databases.
• Cross-Site Scripting (XSS): Injecting malicious scripts into web pages.
• Command Injection: Attacker executes arbitrary commands on a server through a vulnerable

application input.
Tools: Burp Suite, SQLmap, Nikto.

Social Engineering Attacks

What It Is: Exploiting human behavior to gain unauthorized access or sensitive information.
Example: Phishing attacks where an attacker convinces an employee to click on a malicious link or
share login credentials.
Tools: Social Engineering Toolkit (SET), Phishing Kits.

Wireless Network Exploitation

What It Is: Exploiting weaknesses in wireless networks to gain unauthorized access.
Example: Cracking the WPA/WPA2 password of a Wi-Fi network, using techniques like brute force or
dictionary attacks.
Tools: Aircrack-ng, Kismet, Reaver.

OFFENSO HACKERS ACADEMY 84

4.4.3. Common Tools for Exploitation in Network Security

Metasploit Framework

A powerful and widely used penetration testing framework that provides a vast array of pre-built
exploits for known vulnerabilities. It allows attackers (or ethical hackers) to automate the process of
exploiting vulnerabilities and testing security defenses.

Nmap

While Nmap is primarily used for network scanning, it also includes scripts for vulnerability detection
and exploitation (via Nmap scripting engine).

Hydra

A tool for performing brute-force attacks on login credentials for various services (SSH, FTP, HTTP,
etc.).

Netcat

A networking utility often referred to as the "Swiss Army knife" for networking. It is useful for creating
reverse shells, banner grabbing, and testing network services.
BeEF (Browser Exploitation Framework)

A penetration testing tool for web browsers, focusing on client-side vulnerabilities (e.g., XSS).

Aircrack-ng

A suite of tools for assessing Wi-Fi network security, particularly useful for cracking WEP and
WPA/WPA2 passwords.

4.4.4. Exploitation Techniques in Network Security

Phishing: Tricking users into disclosing credentials or performing actions that provide the attacker
with access.

Password Cracking: Using methods like brute-force or dictionary attacks to guess passwords.

Man-in-the-Middle (MitM) Attacks: Intercepting communication between two parties to steal data
or manipulate the transaction.

Reverse Engineering: Analyzing software or system components to find flaws or vulnerabilities that
can be exploited.

Zero-Day Exploits: Attacks that exploit previously unknown vulnerabilities (i.e., those with no available
patch or fix).

OFFENSO HACKERS ACADEMY 85

4.5. Commonly used tools for network pentesting

Angry IP Scanner

Angry IP Scanner is a lightweight and cross-platform network scanner that quickly detects live hosts,
open ports, and their corresponding services.
It allows users to export scan results to various formats for further analysis or reporting.
Angry IP Scanner is known for its simplicity and ease of use, making it a popular choice for network
administrators and individuals.
Best for: Angry IP Scanner is best suited for small to medium-sized businesses and home users who
seek a straightforward and free network scanning solution

Acunetix Vulnerability Scanner

Acunetix Vulnerability Scanner is a web application vulnerability scanner that detects and prioritizes
potential security flaws in web applications and APIs.
It scans for common vulnerabilities such as SQL injection, Cross-Site Scripting (XSS), and security
misconfigurations.
Acunetix provides detailed reports and remediation guidelines to address identified vulnerabilities
effectively.
Acunetix is an excellent choice for businesses and developers focused on securing web applications
and APIs.

SolarWinds Network Performance Monitor (NPM)

NPM is a comprehensive network monitoring and scanning tool that offers real-time insights into
network performance and health.
It provides detailed visualizations, customizable dashboards, and alerts to facilitate proactive network
management.
NPM's automatic discovery feature ensures that new devices are identified and added to the
monitoring list seamlessly.
Best for: SolarWinds NPM is an excellent choice for medium to large enterprises that require extensive
network monitoring and performance optimization

OFFENSO HACKERS ACADEMY 86

Zenmap (Nmap Network Scanner)

Zenmap is a graphical user interface (GUI) for Nmap, providing a more user-friendly way to interact
with Nmap's features.
It enables users to visualize and analyze Nmap scan results with various display filters and output
formats.
Zenmap facilitates quick and easy access to Nmap's advanced scanning capabilities without the need
to remember complex command-line options.
Best for: Zenmap is an excellent choice for those who prefer a GUI-based interface over the command
line and need to leverage Nmap's capabilities effectively.

Nmap (Network Mapper)

Nmap is a powerful open-source network scanner widely used for network exploration and security
auditing.
It supports a vast range of scan types, including host discovery, port scanning, version detection, and
OS fingerprinting.
Nmap can be extended using scripts for advanced functionality and customization.
Best for: Nmap is best suited for network administrators, security professionals, and ethical hackers
who seek a reliable and versatile tool for comprehensive network scanning and assessment.

Nessus

Nessus is a widely-used vulnerability scanner that helps businesses identify potential security holes
and compliance issues in their network infrastructure.
It provides detailed reports on vulnerabilities, misconfigurations, and malware, enabling efficient risk
prioritization.
Nessus supports both internal and external scanning to comprehensively assess the network's security
posture.
Best for: Nessus is ideal for enterprises and large organizations that require robust vulnerability
scanning, compliance management, and risk assessment.

OpenVAS (Open Vulnerability Assessment System)

OpenVAS is a free and open-source vulnerability scanner that performs comprehensive security
assessments of networks.
It offers a continuously updated database of network vulnerabilities, ensuring accurate and up-to-date
results.
OpenVAS is highly customizable, allowing users to configure scans according to their specific
requirements.

Best for: OpenVAS is well-suited for security-conscious businesses, penetration testers, and IT
professionals who seek a reliable vulnerability assessment tool without the burden of high costs

OFFENSO HACKERS ACADEMY 87

Wireshark

Wireshark is a popular and powerful network protocol analyzer that captures and inspects packets in
real-time.
It helps network administrators troubleshoot issues, analyze performance bottlenecks, and detect
suspicious activities.
Wireshark supports a wide array of protocols, making it an essential tool for indepth network analysis.
Best for: Wireshark is the tool of choice for network engineers, security analysts, and anyone involved
in network diagnostics and monitoring.

Methods:

• Ping Sweep (ICMP Echo Request): Sends ICMP echo requests to a range of IP addresses to
determine which hosts are active on the network.

• TCP SYN Scan (Half-open Scan): Sends SYN packets to target ports and listens for SYN-ACK
responses to determine if the port is open.

• TCP Connect Scan: Attempts to establish a full TCP connection with the target port to
determine if it is open.

• UDP Scan: Sends UDP packets to target ports and analyzes the responses to determine if the
port is open.

• OS Detection: Analyzes the responses from the target to determine the operating system
running on the target host.

• Service Version Detection: Analyzes the responses from target ports to determine the version
of the service running on the target.

• Aggressive Scan: Combines various scanning techniques to achieve a more comprehensive
scan but may be more likely to be detected by intrusion detection systems (IDS) or firewalls.

OFFENSO HACKERS ACADEMY 88

Web Application Pentesting
Web application penetration testing (often abbreviated as web app pentesting) is the process of
testing a web application for security vulnerabilities that could be exploited by attackers. The goal is
to identify weaknesses before malicious actors can exploit them. This type of security testing involves
a combination of automated tools and manual techniques to detect potential security risks.

5.1. Steps in Web Application Pentesting

Information Gathering / Reconnaissance

This phase involves collecting as much information as possible about the target application. This can
include:

• Gathering domain and IP addresses.
• Identifying publicly available data such as server configurations, DNS records, and network

information.
• Scanning the website to find available endpoints, directories, and subdomains.

Enumeration and Scanning

After collecting the necessary information, the tester will enumerate all possible resources, including:

• Identifying web server technologies (e.g., Apache, Nginx, IIS).
• Identifying the software platforms (e.g., CMSs like WordPress, Joomla, or frameworks like

Django, Ruby on Rails).
• Running vulnerability scanners like Nessus, Nikto, OpenVAS, or Burp Suite to look for common

weaknesses in the application.

OFFENSO HACKERS ACADEMY 89

Threat Modeling

In this stage, testers simulate possible attack vectors and identify threats based on the architecture of
the application and its components, such as:

• Authentication processes.
• User roles and access control mechanisms.
• Input validation.

Exploitation

This phase is about actively testing the web application to identify vulnerabilities that could be
exploited. This involves:

• SQL Injection: Input fields that are vulnerable to SQL injection.
• Cross-Site Scripting (XSS): Exploiting a website by injecting malicious scripts into input fields.
• Cross-Site Request Forgery (CSRF): Forcing users to execute unwanted actions on a web

application where they’re authenticated.
• Broken Authentication: Exploiting weaknesses in the authentication system.
• Command Injection: Injecting commands into the web server.
• XML External Entity (XXE): Exploiting weaknesses in XML parsers to read sensitive files.
• File Upload Vulnerabilities: Testing the file upload functionality for the ability to upload

malicious files.

Post-Exploitation

After successful exploitation, this phase focuses on assessing the impact and trying to gain access to
deeper layers of the application or systems. It could involve:

• Escalating privileges.
• Gaining access to sensitive data (e.g., databases, user credentials).
• Further exploiting discovered vulnerabilities for a deeper attack.

Reporting

A detailed report is generated, outlining:

• The vulnerabilities identified.
• How they were exploited (if applicable).
• The impact of these vulnerabilities.
• Recommendations for fixing each issue.

A good report also includes risk ratings (e.g., low, medium, high) to help prioritize the fixes.

OFFENSO HACKERS ACADEMY 90

5.2. Tools Used in Web Application Pentesting

Penetration testing (or "pen testing") is a critical process in web application security, where ethical
hackers simulate attacks on web applications to find vulnerabilities before malicious hackers can
exploit them. To perform effective web application penetration testing, various tools are used to
discover and exploit weaknesses in the system. These tools are designed to automate tasks, provide
deep analysis, and assist testers in identifying vulnerabilities such as SQL injection, cross-site scripting
(XSS), and other common web app security issues.

Here’s a list of common tools used in web application penetration testing

5.2.1. Reconnaissance and Information Gathering Tools

These tools are used to collect information about the web application before launching an attack. The
information gathered can help testers identify vulnerabilities and plan their attack.

Nmap: A network scanner used to discover hosts and services on a computer network. It helps identify
open ports, running services, and operating systems.

WhatWeb: A tool for identifying websites’ technologies by examining HTTP headers, JavaScript, and
other information. It can help determine the web server software, CMS, frameworks, and plugins used
on a site.

OFFENSO HACKERS ACADEMY 91

Wappalyzer: A browser extension that identifies the technologies used by a website, such as content
management systems, frameworks, and web server technologies.

Sublist3r: A tool for discovering subdomains of a target web application. Subdomain enumeration can
help testers find hidden areas of a website that may be less secure.

Amass: Another subdomain discovery tool that helps uncover hidden assets and perform network
mapping of the target.

5.2.2. Vulnerability Scanning Tools

These tools are used to identify common vulnerabilities in web applications.

OWASP ZAP (Zed Attack Proxy): A popular open-source penetration testing tool that helps identify
security vulnerabilities in web applications. It offers automated scanners, passive scanning, and
features for manual testing.

OFFENSO HACKERS ACADEMY 92

Burp Suite: Burp Suite is a comprehensive web application security testing platform used by security
professionals to identify and exploit vulnerabilities in web applications. It provides a set of integrated
tools that allow penetration testers to scan, intercept, and manipulate web traffic for detecting
security issues such as SQL injection, cross-site scripting (XSS), and insecure configurations.

Features:

• Proxy: Burp Suite’s proxy intercepts and modifies HTTP/S traffic between the browser and the
web server, allowing testers to manipulate requests and responses.

• Scanner: The automated scanner identifies common vulnerabilities in web applications, such
as SQL injection, XSS, and other security flaws.

• Intruder: A tool for performing brute force and fuzzing attacks on web applications to find
weak points like login credentials, hidden parameters, or session management issues.

• Repeater: Used to manually modify and resend HTTP requests to the server, allowing testers
to test different payloads or inputs.

• Decoder: Decodes or encodes data (e.g., URL-encoded, Base64) for easier analysis during
testing.

• Extender: Allows the addition of custom extensions to enhance Burp’s functionality,
supporting a wide range of third-party tools.

Usage: Burp Suite is widely used for manual and automated testing of web application security,
especially in identifying and exploiting vulnerabilities during penetration testing engagements. It’s
known for its user-friendly interface and powerful feature set, making it a top choice for both beginner
and expert security testers.

Burp Suite Editions:

• Community Edition: Free version with limited features (basic proxy and manual testing tools).
• Professional Edition: Paid version offering advanced features such as automated scanning,

enhanced reporting, and more extensive tools for penetration testing.
Enterprise Edition: Aimed at larger teams, with support for continuous scanning of web
applications in an enterprise environment.

OFFENSO HACKERS ACADEMY 93

Acunetix: An automated web application security scanner that detects and analyzes vulnerabilities
like SQL injection, XSS, and other common issues in web applications. It provides detailed reports and
vulnerability management features.

Nikto: An open-source web server scanner that detects vulnerabilities, such as outdated software
versions, configuration issues, and potential security flaws.

5.2.3. Exploitation and Attack Tools

These tools help exploit vulnerabilities found during the penetration test, enabling the tester to
simulate real-world attacks.

SQLmap: A popular automated tool for detecting and exploiting SQL injection vulnerabilities in web
applications. It can automate the process of identifying vulnerable databases and exfiltrating data.

XSSer: A tool for automating the exploitation of Cross-Site Scripting (XSS) vulnerabilities. It helps to
identify, exploit, and analyze reflected and stored XSS issues in web applications.

Metasploit Framework: While not exclusively a web application testing tool, Metasploit is widely used
for penetration testing, including web application security. It has a wide range of exploits that can be
used to compromise systems once vulnerabilities are found.

Command Injection Testing Tools: Tools like Commix automate the process of finding command
injection vulnerabilities, where malicious commands can be executed on the server.

OFFENSO HACKERS ACADEMY 94

5.2.4. Password Cracking and Authentication Bypass Tools

These tools are used for testing authentication mechanisms and cracking weak or poorly secured
passwords.

Hydra: A fast and flexible password-cracking tool that supports various protocols, including HTTP, FTP,
and SSH. It’s commonly used to test the strength of login forms.

Burp Suite Intruder: A tool within Burp Suite used for automating attacks, such as brute-force attacks
or fuzzing, on web application forms, login pages, and other input points.

John the Ripper: A powerful password cracking tool often used for cracking password hashes obtained
from web applications or system configurations.

5.2.5. Web Application Firewall (WAF) Testing Tools

Web Application Firewalls (WAFs) are designed to protect web applications from attacks. These tools
help penetration testers identify flaws in WAFs or bypass them.

WAFW00F: A tool to identify and fingerprint web application firewalls. It can detect a wide range of
popular WAFs and can help testers evaluate how the WAF is configured.

OFFENSO HACKERS ACADEMY 95

Bypass WAF Tools: These tools include SQLmap and Burp Suite, which help bypass WAF protections
by using techniques like HTTP header manipulation, encoding, and custom payloads.

5.2.6. Network and Proxy Tools

These tools are essential for intercepting and manipulating HTTP/S traffic during a penetration test.

Wireshark: A network protocol analyzer used to capture and inspect the traffic between the client
and server, providing insights into potential security issues.

Fiddler: A web debugging proxy that allows for the inspection and manipulation of HTTP/S traffic. It
can be used to test for issues like insecure HTTP headers and session management flaws.

Charles Proxy: Similar to Fiddler, Charles Proxy is an HTTP proxy/debugging tool used to monitor,
analyze, and modify HTTP requests between clients and web servers.

5.2.7. Post-Exploitation and Reporting Tools

Once vulnerabilities are exploited, these tools assist in maintaining access, pivoting within the
network, or reporting findings.

Empire: A post-exploitation tool used for advanced web application attacks. It provides remote access
and enables the attacker to use various post-exploitation techniques.

OFFENSO HACKERS ACADEMY 96

Dradis: A collaboration and reporting tool used to create comprehensive penetration testing reports.
It helps document findings, track vulnerabilities, and generate final reports.

Faraday: An integrated penetration testing environment that allows testers to work collaboratively
and document vulnerabilities and attacks efficiently.

5.2.8. Miscellaneous Tools

Dirbuster: A directory and file brute-forcing tool that helps find hidden files and directories on a web
server. It can discover sensitive files or areas that should not be publicly accessible.

Wfuzz: A tool for brute-forcing web applications, often used for testing for hidden parameters, files,
or vulnerabilities in web applications.

OFFENSO HACKERS ACADEMY 97

5.3. Introduction to web technologies

Web technologies refer to the tools and techniques used build, develop and manage web applications
and websites. These technologies form the foundation of the World Wide Web, enabling
communication between computers over the internet.

5.3.1. HTTP (Hypertext Transfer Protocol)

HTTP is an application-layer protocol that enables communication between a client (e.g., a web
browser) and a server hosting a website or web application. It dictates how the requests for resources
(such as web pages or files) are sent from the client and how the server responds.

How HTTP Works

Client (Request): When a user visits a website, their browser (or other client software) sends an HTTP
request to the server hosting the web page.
Server (Response): The server processes the request, fetches the required data (like an HTML page),
and sends it back to the client as an HTTP response.

The typical flow of HTTP communication:

• Request: A client sends an HTTP request to the server.
• Processing: The server processes the request (e.g., retrieving data, generating content).
• Response: The server sends an HTTP response, typically containing the requested resource

(like an HTML page or image).

HTTP Request: An HTTP request is sent by the client to the server to ask for a specific resource. It
consists of several components:

HTTP Method: Specifies the type of action the client wants to perform (e.g., GET, POST, PUT, DELETE).
URL (Uniform Resource Locator): The address of the resource being requested.

Headers: Additional metadata sent with the request (e.g., type of data accepted, authentication
tokens).

Body: (Optional) Contains data to be sent to the server (e.g., form submission data, file uploads).

OFFENSO HACKERS ACADEMY 98

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124
Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

GET: HTTP method to retrieve the resource.
/index.html: The resource being requested.
HTTP/1.1: The HTTP version being used.
Host: The domain name of the server.
User-Agent: Information about the client's browser and operating system.

HTTP Response

Once the server processes the request, it sends an HTTP response to the client. The response consists
of:

Status Code: A 3-digit code that indicates the status of the request (e.g., 200 OK, 404 Not Found).

Headers: Information about the response, such as content type (Content-Type: text/html) and cache
settings.

Body: The requested data, such as an HTML page, image, or JSON object.

Example of an HTTP Response

HTTP/1.1 200 OK
Date: Sun, 25 Nov 2024 10:00:00 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 1234

<!DOCTYPE html>
<html>
<head><title>Example Page</title></head>
<body>

<h1>Welcome to Example.com</h1>
<p>This is an example webpage.</p>

</body>
</html>
200 OK: Status code indicating the request was successful.
Content-Type: Indicates the type of data (HTML in this case).
Body: The content returned (an HTML document).

http://www.example.com/

OFFENSO HACKERS ACADEMY 99

HTTP Methods

HTTP defines several methods (also known as verbs) that specify what action to perform:

• GET: Retrieve data from the server (e.g., fetching a webpage).
• POST: Send data to the server (e.g., submitting form data).
• PUT: Update an existing resource on the server (e.g., editing a document).
• DELETE: Remove a resource from the server (e.g., deleting a file).
• PATCH: Apply partial modifications to a resource.
• HEAD: Retrieve headers without the body (similar to GET but without the content).
• OPTIONS: Retrieve the supported methods and capabilities of the server.

HTTP Status Codes

HTTP responses include a status code that indicates the result of the request. These codes are divided
into categories:

• 1xx - Informational: Request received, continuing process.
100 Continue: The server acknowledges the initial part of the request.

• 2xx - Success: The request was successfully received, understood, and processed.
200 OK: The request was successful.
201 Created: The request was successful, and a resource was created.

• 3xx - Redirection: Further action is needed to complete the request.
301 Moved Permanently: The resource has been permanently moved to a new URL.
302 Found: The resource has temporarily moved to another location.

• 4xx - Client Error: The client seems to have made an error.
400 Bad Request: The server could not understand the request.
404 Not Found: The requested resource could not be found.
403 Forbidden: The client does not have permission to access the resource.

• 5xx - Server Error: The server failed to fulfill a valid request.
500 Internal Server Error: The server encountered an error while processing the request.
502 Bad Gateway: The server received an invalid response from an upstream server.

OFFENSO HACKERS ACADEMY 100

Security in HTTP: HTTPS

HTTP is not secure by default. This means the data transferred between the client and the server is
not encrypted, leaving it vulnerable to interception (e.g., via man-in-the-middle attacks).

HTTPS (HyperText Transfer Protocol Secure): A secure version of HTTP that uses TLS (Transport Layer
Security) or SSL (Secure Sockets Layer) encryption to protect the data transmitted between the client
and server.

Caching and Cookies

Caching: HTTP allows resources to be cached by browsers or proxies to speed up subsequent requests.
The Cache-Control header determines caching behavior.

Cookies: Small pieces of data stored on the client-side, sent with HTTP requests. They are used for
session management, user preferences, and tracking.

OFFENSO HACKERS ACADEMY 101

5.3.2 Web Functionality

Web functionality refers to the features and interactions available to users when they visit a website
or use a web application. This includes everything a website can do, such as:

• Displaying text and images
• Enabling user interactions like form submissions or buttons
• Processing data (e.g., through JavaScript or back-end services)
• Dynamic content updates (e.g., via AJAX, real-time updates)
• Managing user sessions or authentication

How a Web Server Works:

• Request from Client:
A client (like a browser) sends an HTTP request to the web server, asking for a specific resource (e.g.,
a webpage, image, or file).
• Request Processing:
The web server receives the request and interprets it to determine the required resource.
• Resource Fetching:
The server retrieves the requested resource from its storage (e.g., HTML files, databases, or
application code).
• Response to Client:
The server sends the resource back to the client in the form of an HTTP response.
• Rendering by Client:
The client (browser) processes the response and displays the content to the user.

OFFENSO HACKERS ACADEMY 102

Server-Side

The server-side is the part of web development that runs on the server, and it handles the logic, data
processing, and database interaction behind the scenes. The server is responsible for serving the
content, processing requests, and returning responses to the client.

Server: A physical or virtual machine that hosts the website and serves web pages or data. Examples:
Apache, Nginx, or cloud platforms like AWS.
Backend Programming Languages: These are used to handle requests, process data, and interact with
databases. Examples: Python (Django, Flask), JavaScript (Node.js), Ruby (Rails), PHP, Java (Spring), etc.
Databases: Databases like MySQL, PostgreSQL, MongoDB, or Redis store and manage data. Server-
side code retrieves, manipulates, and saves data in these databases.
Authentication: The server is responsible for handling authentication, like verifying a user’s
credentials, handling sessions or JWTs (JSON Web Tokens), and controlling access to resources.
API: Server-side often includes exposing APIs (REST, GraphQL) that the client can call to fetch or send
data asynchronously.

Client-Side

The client-side refers to everything that happens in the user’s browser. It is where the website’s user
interface (UI) is rendered and where interactive elements (such as buttons or forms) are located. The
client-side is responsible for how the user interacts with the website or web application.

Key Aspects of Client-Side:

• Browser: The application that loads and displays the website (Chrome, Firefox, Safari, etc.).
• Frontend Technologies:

o HTML: Provides the structure of the web pages.
o CSS: Styles the web pages, including layout, colors, fonts, and responsiveness (e.g.,

using CSS frameworks like Bootstrap).
• JavaScript: Adds interactivity to the web page (e.g., form validation, dynamic updates,

animations, etc.).
• Frameworks/Libraries: Client-side frameworks or libraries make it easier to build complex UIs.

Examples include React, Angular, Vue.js, and jQuery.
• AJAX (Asynchronous JavaScript and XML): AJAX allows the browser to send and receive data

from the server asynchronously, meaning the page doesn’t need to be reloaded to update
content.

• Local Storage/Cookies: These are used to store data on the client’s browser (e.g., for
remembering user preferences or session information).

OFFENSO HACKERS ACADEMY 103

5.3.3. Encoding Schemes

URL Encoding (Percent Encoding)

Purpose: URL encoding is used to ensure that special characters in URLs are transmitted correctly over
the web. Since URLs can only contain a limited set of characters, non-alphanumeric characters (e.g.,
spaces, punctuation) are converted into a specific format.

How it works: Characters are replaced with a % symbol followed by two hexadecimal digits
representing their ASCII code.

Example:

Space () becomes %20
Ampersand (&) becomes %26
Slash (/) becomes %2F

Use case: URLs, query parameters, and HTTP requests.

Unicode Encoding

Purpose: Unicode is a universal character encoding standard designed to represent text from all
languages, including special characters, emojis, and more. It allows for the consistent representation
of text across different systems and platforms.

How it works: Each character is assigned a unique code point (a number), which is then represented
in different formats like UTF-8, UTF-16, or UTF-32.

Example:
The letter "A" is represented as U+0041 in Unicode.
Emoji "●̈v●" is U+1F60A.

Use case: Text storage, internationalization of software, web pages, and databases.

OFFENSO HACKERS ACADEMY 104

HTML Encoding (HTML Entities)

Purpose: HTML encoding is used to represent characters that have special meanings in HTML code
(e.g., <, >, &). It ensures that these characters are rendered correctly in a web page without interfering
with the HTML structure.

How it works: Special characters are replaced with an entity name (e.g., < for <) or a numeric code
(< for <).

Example:

Less than sign (<) becomes <
Greater than sign (>) becomes >
Ampersand (&) becomes &

Use case: HTML pages, web development to avoid conflicts with HTML tags and ensure proper
rendering.

Base64 Encoding

Purpose: Base64 is used to encode binary data into an ASCII string. It's commonly used to transmit
binary data, such as images or files, over text-based protocols (like email or HTTP).

How it works: Binary data is grouped into 6-bit chunks, which are then mapped to a set of 64 printable
characters (letters, numbers, +, /). If the data is not a multiple of 3 bytes, padding is added using =
symbols.

Example:

A binary string 01001000 01100101 (representing the word "He") can be Base64 encoded as
SGU=.

Use case: Embedding images in HTML, sending data via email attachments, and transmitting binary
data over text protocols.

Hexadecimal (Hex) Encoding

Purpose: Hex encoding is a way to represent binary data in a more human-readable format, using
base-16 (hexadecimal) notation. Each byte of data is represented by two hexadecimal characters (0-
9, A-F).

How it works: Binary data is grouped into 8-bit chunks, and each chunk is represented by a 2-digit
hexadecimal number.

Example:
Binary data 01101000 (representing the character "h") is encoded as 68 in hexadecimal.
The string "hello" in hex encoding is 68 65 6C 6C 6F.

Use case: Debugging, low-level programming, memory dumps, and representing binary data in a
readable format.

OFFENSO HACKERS ACADEMY 105

5.4. Penetration Testing Standards

Penetration testing standards are guidelines and methodologies that outline how penetration tests
should be conducted. These standards ensure consistency, reliability, and quality in the testing
process.

Here are some widely recognized penetration testing standards.

OSSTMM (Open-Source Security Testing Methodology Manual)

Focus: Comprehensive security testing for networks, systems, processes, and human factors.
Key Features: Provides metrics for measuring operational security.
Use Case: Organizations needing a broad security assessment approach.

NIST SP 800-115 (Technical Guide to Information Security Testing and Assessment)

Focus: Guidelines for security assessments, including penetration testing.
Key Features: Provides structured phases (planning, discovery, attack, reporting).
Use Case: Organizations following U.S. government standards.

ISSAF (Information Systems Security Assessment Framework)

Focus: A structured framework for conducting penetration testing on networks, applications, and
human elements.
Key Features: Covers all phases of security testing, from reconnaissance to reporting, ensuring
thorough vulnerability assessments.
Use Case: Ideal for organizations seeking a standardized and in-depth penetration testing
methodology.

OFFENSO HACKERS ACADEMY 106

OWASP(Open Web Application Security Project)

The OWASP Top 10 is a list of the ten most critical security risks to web applications, as identified by
the Open Web Application Security Project (OWASP). The list is updated periodically to reflect the
most current and pressing threats. Here's an overview of the OWASP Top 10 for 2021

• Broken Access Control (A01:2021)
Description: Broken access control occurs when users can gain unauthorized access to resources
or perform actions outside their allowed privileges. This includes viewing other users' data,
accessing admin functions, or bypassing authorization mechanisms.
Prevention: Implement proper role-based access control (RBAC), enforce the principle of least
privilege, and validate access control on the server side.
• Cryptographic Failures (A02:2021)
Description: This category includes weaknesses in cryptographic systems, such as poor encryption,
improper key management, or the use of weak algorithms. It exposes sensitive data like
passwords, credit card information, and personal data to attackers.
Prevention: Use strong encryption algorithms (e.g., AES-256), store passwords using secure hash
functions (e.g., bcrypt, PBKDF2), and manage cryptographic keys securely.

• Injection (A03:2021)
Description: Injection attacks, such as SQL injection, occur when untrusted data is sent to an
interpreter, allowing attackers to manipulate queries or commands. This can lead to data leakage,
deletion, or unauthorized access.
Prevention: Use parameterized queries or prepared statements, and sanitize user inputs.

• Insecure Design (A04:2021)
Description: Insecure design refers to weaknesses in the architecture and design of a system that
lead to security vulnerabilities. These flaws are often present from the very beginning and may be
difficult to fix later in the development lifecycle.
Prevention: Implement secure design practices, conduct threat modeling, and follow security best
practices during the design phase.

OFFENSO HACKERS ACADEMY 107

• Security Misconfiguration (A05:2021)
Description: Security misconfigurations happen when software, servers, or databases are
improperly configured, leaving unnecessary services running, or exposing sensitive data or
interfaces to the public.
Prevention: Regularly review and update configurations, disable unused services, set appropriate
permissions, and automate security configuration management.

• Vulnerable and Outdated Components (A06:2021)
Description: Using outdated or vulnerable third-party libraries, components, or frameworks can
introduce risks to an application, as these components may have known exploits that attackers
can leverage.
Prevention: Regularly update dependencies and components, monitor for vulnerabilities, and
avoid using unsupported libraries or versions.

• Identification and Authentication Failures (A07:2021)
Description: This category involves issues with user authentication and session management, such
as weak password policies, poor session handling, or predictable session IDs, leading to
unauthorized access.
Prevention: Implement multi-factor authentication (MFA), ensure secure password storage, and
use session timeouts with secure cookies.

• Software and Data Integrity Failures (A08:2021)
Description: Software and data integrity failures occur when applications or services fail to verify
the integrity of code or data, allowing attackers to tamper with code, configurations, or data.
Prevention: Use code-signing, enforce secure software development practices, and verify the
integrity of software updates and data.

• Security Logging and Monitoring Failures (A09:2021)
Description: Inadequate logging and monitoring can delay the detection of security incidents,
allowing attackers to operate undetected. This often leads to delayed response to breaches and
exploitation.
Prevention: Implement comprehensive logging and monitoring, set up alerts for unusual activity,
and review logs regularly.
• Server-Side Request Forgery (SSRF) (A10:2021)
Description: SSRF occurs when an attacker tricks a server into making a request to an unintended
location, often accessing internal systems or services that should be restricted. This can lead to
data leakage or system compromise.
Prevention: Validate and sanitize user inputs, restrict outgoing requests, and ensure that the
server can’t access internal resources that aren't necessary for its operation.

The OWASP Top 10 serves as a guide for developers, security teams, and organizations to understand
and mitigate the most critical security risks in web applications. Addressing these vulnerabilities with
secure coding practices, regular testing, and security monitoring is essential to maintaining the
security of web applications.

PTES (Penetration Testing Execution Standard)

Focus: A structured approach to penetration testing.
Key Features: Covers pre-engagement, intelligence gathering, threat modeling, exploitation, and
reporting.
Use Case: Penetration testers looking for a systematic process.

OFFENSO HACKERS ACADEMY 108

CREST Penetration Testing Guide

Focus: Best practices for penetration testing services.
Key Features: Emphasizes ethical and professional practices.
Use Case: Organizations requiring certified testing from CREST-accredited entities.

PCI DSS Penetration Testing Guide

Focus: Pen testing requirements for organizations handling payment card data.
Key Features: Ensures compliance with PCI DSS (Payment Card Industry Data Security Standard).
Use Case: Payment processing organizations.

ISSAF (Information Systems Security Assessment Framework)

Focus: Comprehensive framework for security assessments.
Key Features: Covers technical, operational, and managerial aspects.
Use Case: Detailed security evaluations.

ISO/IEC 27001 and ISO 27002

Focus: Information security management system (ISMS) and related testing practices.
Key Features: Provides a framework for managing security risks.
Use Case: Organizations aiming for ISO compliance.

Each standard has its strengths and is suited for specific testing scenarios. By adhering to a recognized
standard, penetration testers can deliver thorough, reliable, and professional results.

5.5. Common Web Application Vulnerabilities

Web applications are frequently targeted by attackers due to their widespread use and potential
vulnerabilities. Here are some of the most common web application vulnerabilities:

OFFENSO HACKERS ACADEMY 109

SQL Injection

SQL Injection (SQLi) is one of the most common and dangerous web application vulnerabilities. It
occurs when an attacker is able to manipulate SQL queries by inserting or injecting malicious SQL code
into the query. This allows the attacker to execute arbitrary SQL commands on the database, which
could lead to unauthorized access, data manipulation, and even complete system compromise.

How SQL Injection Works:

SQL injection attacks typically exploit vulnerabilities in an application’s database query process,
especially when user input is not properly sanitized. The attacker manipulates input fields (like forms,
URL parameters, or cookies) to inject malicious SQL code that is then executed by the database.

Example of a Vulnerable SQL Query
Consider an application that accepts a user’s username and password via a login form. The following
SQL query is used to authenticate the user:

SELECT * FROM users WHERE username = 'user_input' AND password = 'user_password';

If the input is not sanitized, an attacker could enter the following input for the username and password
fields:

Username: admin' --
Password: (anything)

This would result in the following query being sent to the database:

SELECT * FROM users WHERE username = 'admin' --' AND password = 'anything';
In SQL, the -- denotes a comment, so the rest of the query (AND password = 'anything') is ignored, and
the query becomes:
SELECT * FROM users WHERE username = 'admin'; -- The password condition is ignored.

As a result, the query may successfully log in the attacker as the admin user without needing a
password.

OFFENSO HACKERS ACADEMY 110

Types of SQL Injection

• In-Band SQL Injection
The attacker uses the same channel to both launch the attack and retrieve the results.

o Error-based SQL Injection: The attacker deliberately causes SQL errors to reveal
information about the database structure (e.g., database version, table names, etc.).

o Union-based SQL Injection: The attacker uses the UNION SQL operator to combine
results from multiple queries and extract data from other tables.

• Blind SQL Injection

The attacker cannot see the results of their query directly but can infer information based on
the behavior of the application.
o Boolean-based Blind SQL Injection: The attacker modifies the query in such a way that

the application returns a true or false response. The attacker can then use this feedback
to infer information about the database.

o Time-based Blind SQL Injection: The attacker uses time delays (SLEEP(), WAITFOR
DELAY) in the query to infer information based on how long it takes the application to
respond.

• Out-of-Band SQL Injection
The attacker uses different channels to extract information from the database, often using
techniques like DNS or HTTP requests to send data back to the attacker.

Preventing SQL Injection

To prevent SQL injection attacks, developers should follow best practices for secure coding and
database interactions:

• Use Prepared Statements / Parameterized Queries
This is the most effective defense. Prepared statements separate SQL logic from data,
ensuring that user input is treated as data and not executable code.

• Use Stored Procedures
Stored procedures can help limit the scope of SQL commands and restrict direct user input
from being executed as part of SQL queries.

• Input Validation
Validate user inputs to ensure they conform to expected formats. This can include checking
for valid characters, lengths, and types (e.g., email, number).

• Use Web Application Firewalls (WAFs)
A WAF can help detect and block common attack patterns associated with SQL injection,
acting as an additional layer of defense.

• Limit Database Privileges

Restrict the database account used by the application to only the permissions necessary for
the application to function. For example, if the application does not need to delete data,
ensure the database user cannot execute DELETE queries.

OFFENSO HACKERS ACADEMY 111

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is a type of security vulnerability that allows attackers to inject malicious
scripts (usually JavaScript) into web pages viewed by other users. The attacker’s script is then executed
in the context of a victim’s browser, potentially leading to theft of sensitive information, session
hijacking, defacement, or even unauthorized actions on behalf of the user.
XSS attacks are typically possible when web applications fail to properly validate or sanitize user inputs
that are reflected back to the user in a webpage (e.g., in form inputs, URLs, or cookies).

How XSS Works:

XSS attacks typically exploit the following scenarios:

User Input Is Reflected Without Proper Validation: If user-provided data (such as in form fields or URL
parameters) is displayed on a webpage without proper sanitization, it can allow an attacker to inject
scripts.

No Output Encoding: When user input is included in the HTML output without encoding, the browser
interprets it as executable code, not just plain text.

Untrusted Content Is Trusted: If the web application trusts user-supplied data and embeds it directly
in a web page (e.g., in a script tag or as an attribute), the attacker can inject malicious code that runs
on the victim's browser.

Types of XSS Attacks

• Stored XSS (Persistent XSS)
In a stored XSS attack, the malicious script is permanently stored on the server (e.g., in a
database, comment section, or forum post). When other users view the compromised
content, the malicious script is executed in their browsers.
Example: An attacker posts a malicious script in a forum's comment section. Later, any user
who views the comment triggers the script in their browser.

OFFENSO HACKERS ACADEMY 112

• Reflected XSS (Non-Persistent XSS)
In reflected XSS, the malicious script is immediately reflected back to the victim by the web
server, typically via a URL or an HTTP request. This type of XSS is often delivered through
phishing links.
Example: The attacker sends a URL containing a malicious script, which is reflected by the
server and executed when the victim clicks on the link.

• DOM-Based XSS
DOM-based XSS occurs when the client-side script (JavaScript) modifies the DOM (Document
Object Model) in a way that results in the execution of malicious JavaScript. This type of attack
does not involve a server-side component and is often triggered when client-side code
interacts improperly with user inputs.
Example: An attacker submits a payload through a URL or form, and the JavaScript on the page
reads and processes this input insecurely, causing the malicious code to run.

Impacts of XSS Attacks

XSS attacks can lead to a wide range of malicious activities, including:

• Session Hijacking: Attackers can steal a user's session cookie and impersonate them on the
application, gaining unauthorized access to their account.

• Phishing: Malicious scripts can redirect users to fake login pages or display fraudulent forms,
collecting sensitive information like usernames, passwords, and credit card details.

• Defacement: Attackers can modify the content displayed to users, potentially causing damage
to the website’s reputation.

• Malware Distribution: Malicious scripts can trigger the download and installation of malware,
such as trojans or ransomware, onto a user's computer.

• Unauthorized Actions: Scripts can simulate user actions (e.g., clicking buttons or submitting
forms) without the user's knowledge, potentially causing financial or data loss.

Preventing XSS Attacks

To protect your web application from XSS vulnerabilities, developers should follow these best
practices:

• Input Validation and Sanitization
Sanitize User Input: Ensure that user input is filtered to remove potentially dangerous
characters (such as <, >, and &), which can be used in malicious scripts.
Validate Inputs: Check if the input matches expected patterns (e.g., numeric values, email
addresses) before processing.

• Output Encoding
HTML Entity Encoding: Convert special characters like < and > into HTML entities (e.g., <
and >) so that they are displayed as plain text and not interpreted as HTML or JavaScript.

• Use CSP (Content Security Policy)
CSP is a browser feature that helps prevent XSS by restricting the sources from which scripts
can be loaded. It provides an additional layer of defense by blocking inline scripts and only
allowing trusted sources.

• HttpOnly and Secure Cookies
HttpOnly cookies cannot be accessed via JavaScript, reducing the risk of session hijacking via
XSS.
Secure cookies are only transmitted over HTTPS, protecting against interception.

OFFENSO HACKERS ACADEMY 113

Cross-Site Request Forgery (CSRF)

CSRF forces an authenticated user to perform actions on a web application without their consent, by
tricking them into making unwanted requests.

Prevention: Use anti-CSRF tokens in forms, ensure sensitive actions are protected by POST requests,
and validate the request's origin.

Broken Authentication

Weak authentication mechanisms can allow attackers to impersonate users, access sensitive
information, or escalate privileges. Examples include predictable session IDs or improper credential
storage.

How Broken Authentication Works:

Broken authentication occurs when weaknesses in the authentication process allow attackers to gain
unauthorized access to user accounts. This can happen due to poor password management, weak
session handling, or improper implementation of authentication mechanisms. Attackers may exploit
vulnerabilities such as default credentials, weak passwords, exposed session tokens, or credential
stuffing (using leaked usernames and passwords from previous breaches). Once an attacker gains
access, they can impersonate users, steal sensitive data, or perform malicious actions within the
system. To prevent broken authentication, organizations should enforce strong password policies,
implement multi-factor authentication (MFA), properly secure session tokens, and regularly monitor
for unauthorized login attempts.

Prevention: Implement multi-factor authentication (MFA), securely store passwords using hashing
algorithms (e.g., bcrypt), and use session timeouts.

OFFENSO HACKERS ACADEMY 114

Sensitive Data Exposure

Improperly stored or transmitted sensitive data can be exposed to attackers, such as unencrypted
passwords, personal information, or credit card details.

Prevention: Use HTTPS (SSL/TLS) for all communications, encrypt sensitive data at rest, and ensure
proper access controls are in place.

Security Misconfiguration

Poorly configured servers, databases, or application components may leave attack surfaces open, such
as exposed administrative interfaces, unnecessary services, or verbose error messages.

Prevention: Regularly update software, perform security audits, disable unused features, and limit
error information.

Insecure Direct Object References (IDOR)

Attackers manipulate input parameters (e.g., URLs, form fields) to access unauthorized resources like
files or database entries.

Prevention: Use proper access control checks to ensure users can only access resources they are
authorized to.

Broken Access Control

Flaws in access control mechanisms may allow attackers to escalate privileges or access restricted
data, such as viewing other users' information.

Prevention: Implement proper role-based access control (RBAC), enforce principle of least privilege,
and test access control configurations.

OFFENSO HACKERS ACADEMY 115

Clickjacking

Attackers trick users into clicking on invisible elements by embedding a malicious page within a
legitimate one, often leading to unintended actions.

Prevention: Use the X-Frame-Options HTTP header to prevent your pages from being embedded in
frames or iframes.

Insufficient Logging & Monitoring

Inadequate logging and monitoring can delay detection of attacks, making it easier for attackers to
remain undetected.

Prevention: Enable comprehensive logging of security-related events, monitor logs regularly, and set
up alerts for suspicious activities.

Server-Side Request Forgery (SSRF)

Attackers manipulate the server to make unauthorized requests, which can lead to the exposure of
internal resources, such as databases, cloud services, or internal APIs.

Prevention: Validate and sanitize all user inputs, use proper access control for internal services, and
disable unnecessary network protocols.

OFFENSO HACKERS ACADEMY 116

File Upload Vulnerabilities

Attackers upload malicious files (e.g., web shells, executable files) to a server, which can then be
executed to gain unauthorized access.

Prevention: Validate file types, restrict file upload locations, and set appropriate file size limits.

Unvalidated Redirects and Forwards

Attacker’s exploit unvalidated redirects to send users to malicious websites or phishing pages.

Prevention: Avoid using user-controlled input in redirects and validate all redirects before allowing
them.

Denial of Service (DoS) / Distributed Denial of Service (DDoS)

Attackers overwhelm a server or network with traffic, making it unavailable to legitimate users.

Prevention: Use rate limiting, CAPTCHA, web application firewalls (WAFs), and DDoS protection
services.

Using Components with Known Vulnerabilities

Web applications using outdated libraries or components with known security flaws may become
vulnerable to attacks.

Prevention: Regularly update libraries and dependencies, and monitor for security advisories related
to the software you're using.

OFFENSO HACKERS ACADEMY 117

XML External Entity (XXE) Injection

Attackers exploit vulnerabilities in XML parsers to read sensitive files, execute remote requests, or
cause denial of service (DoS).

Prevention: Disable external entity processing in XML parsers and use modern, secure libraries for
parsing XML.

Broken Cryptography

Weak encryption algorithms or improper implementation of cryptographic techniques can lead to
data breaches or exposure.

Prevention: Use strong, up-to-date cryptographic standards (e.g., AES, RSA) and ensure proper
implementation.

Business Logic Vulnerabilities

Flaws in the application's business logic can be exploited by attackers to manipulate transactions, gain
unauthorized benefits, or bypass processes.

Prevention: Thoroughly test business logic, implement validation on both the client and server sides,
and review the application's flow regularly.

OFFENSO HACKERS ACADEMY 118

5.6. Authentication and Authorization

Authentication and authorization are two fundamental concepts in web application security, and
while they are closely related, they serve distinct purposes. Both are critical for controlling access to
resources and ensuring that only authorized users can perform specific actions within an application.

Authentication Flaws
Authentication is the process of verifying the identity of a user or system. Authentication flaws occur
when the system does not properly confirm the user’s identity or fails to adequately protect this
process.

Common Authentication Flaws:

• Weak Password Policies:
When an application allows users to set weak passwords (e.g., short, simple, or easily
guessable passwords), attackers can easily guess or brute-force passwords to gain
unauthorized access.

• Insufficient Login Rate Limiting:
Failure to implement mechanisms like account lockouts or CAPTCHA after a certain number
of failed login attempts makes it easier for attackers to perform brute-force attacks.

• Insecure Password Storage:
Storing passwords in plaintext or using weak hashing algorithms (like MD5) makes it easier for
attackers to retrieve passwords in the event of a data breach. Secure password storage should
use strong hashing algorithms (e.g., bcrypt, Argon2).

OFFENSO HACKERS ACADEMY 119

• Session Management Flaws:
Failure to properly invalidate or manage sessions (such as not terminating a session after
logout or using weak session tokens) can allow attackers to hijack a user’s session.

• Lack of Multi-Factor Authentication (MFA):
Relying solely on passwords for authentication without adding an additional layer of security
(e.g., SMS codes, authenticator apps) can make the system more vulnerable to attacks like
phishing or credential stuffing.

• Insecure Password Reset Mechanism:
If password reset functionality is not properly implemented, attackers might be able to reset
user passwords without proper validation, allowing them to take control of accounts.

• Broken Authentication:
This occurs when the authentication mechanism is misconfigured, or flaws allow attackers to
bypass it altogether. For example, an attacker might exploit a vulnerability in the system to
impersonate a legitimate user.

Authorization Flaws
Authorization is the process of granting users permission to access specific resources or perform
actions within a system. Authorization flaws occur when the system fails to enforce correct
permissions or provides excessive privileges.
Common Authorization Flaws:

• Privilege Escalation:
When users are able to escalate their privileges (e.g., from a regular user to an administrator)
without proper authorization, it can lead to unauthorized access to sensitive data or actions
that should only be allowed by certain users.

• Broken Access Control:
This occurs when users can access resources or perform actions they shouldn’t be able to. For
example, a user might access another user’s data (horizontal privilege escalation) or perform
admin actions (vertical privilege escalation) without proper authorization.

• Insecure Direct Object References (IDOR):
An attacker can manipulate parameters (e.g., URLs or form fields) to access unauthorized
objects or resources. For example, changing a URL parameter to access a file that they
shouldn't have access to.

• Lack of Proper Role-Based Access Control (RBAC):
When the system does not correctly assign roles to users or does not properly limit access
based on these roles, users may gain access to data or actions they should not be able to
perform.

• Inadequate Segregation of Duties (SoD):
This flaw occurs when a user can perform conflicting roles or access data and resources that
they should not be able to, potentially leading to fraud or data corruption.

• Overly Broad Permissions:
Granting excessive permissions to users, such as "admin" rights to everyone, is a common
issue. It gives unauthorized access to sensitive data or system settings, exposing the
application to potential abuse or exploitation.

• Insecure Session Handling:
If session IDs are improperly managed, attackers could exploit the session management
system to impersonate legitimate users or gain access to higher-level permissions.

OFFENSO HACKERS ACADEMY 120

Mitigating Authentication and Authorization Flaws

• Use Strong Password Policies: Enforce the use of strong, complex passwords and regular
password changes.

• Implement Multi-Factor Authentication (MFA): Add an additional layer of security to ensure
user identity is confirmed through something the user has or knows (e.g., an app-based token,
email, or SMS).

• Use Secure Password Storage Practices: Store passwords using modern, cryptographically
secure hashing algorithms (e.g., bcrypt, Argon2) with proper salting.

• Apply Least Privilege Principle: Users should only be granted the minimum level of access
necessary for their role.

• Enforce Role-Based Access Control (RBAC): Ensure users can only access resources and
perform actions for which they have the proper authorization.

• Regularly Test for Vulnerabilities: Perform security audits, penetration testing, and code
reviews to identify and address flaws in the authentication and authorization mechanisms.

OFFENSO HACKERS ACADEMY 121

Android Application Pentesting
Penetration testing (or "pentesting") of Android applications involves assessing the security of an
Android app to identify vulnerabilities that could be exploited by malicious actors. This process helps
ensure that the app is secure, protecting both user data and the overall system. Here is an outline of
the typical process and tools used in Android app pentesting:

6.1. Steps in Android Application Pentesting:

Information Gathering & Reconnaissance

APK Analysis: Obtain the APK (Android Application Package) of the app. This can be done by
downloading the app from the Play Store or extracting it from the device.

Reverse Engineering: Decompile the APK using tools to examine the app's code, resources, and
architecture. Tools like `APKTool`, `Jadx`, and `dex2jar` are used for reverse engineering APKs.

Static Analysis: Analyze the source code for potential issues such as hardcoded sensitive information,
weak cryptography, and insecure APIs.

Manifest Analysis: Review the AndroidManifest.xml file for sensitive permissions and components
that might present security risks (e.g., exposing activities to external apps or internet access
permissions).

OFFENSO HACKERS ACADEMY 122

Dynamic Analysis

Interception of Traffic: Use tools like Burp Suite or OWASP ZAP to intercept HTTP/HTTPS traffic
between the app and the server. Analyze the data for sensitive information leakage or poor encryption
practices.

API Testing: Interact with the app's backend APIs to check for common vulnerabilities like SQL
Injection, Cross-Site Scripting (XSS), or Authentication Bypass.

Local Storage Examination: Check for insecure storage of sensitive data on the device (e.g.,
unencrypted database files, Shared Preferences, or cached data).

Privilege Escalation: Try to gain unauthorized access to app features by manipulating or bypassing
authentication mechanisms, such as by modifying request headers, cookies, or tokens.

Security Vulnerability Testing

Weak Cryptography: Check for the use of weak or outdated encryption methods for storing data,
securing communications, or generating keys. Review the app's use of SSL/TLS and check for
vulnerabilities like SSL Pinning Bypass.

Insecure Data Storage: Examine the app's storage methods. Sensitive data should never be stored in
plain text or improperly protected in local storage or logs.

Exploit Known Vulnerabilities

Known CVEs (Common Vulnerabilities and Exposures): Check the app for known security
vulnerabilities by comparing it to known CVEs related to libraries and frameworks used in the app.
Third-party Libraries: Examine the third-party libraries or SDKs integrated into the app, such as
Firebase, Google Play Services, etc. These may have known vulnerabilities or improper configurations
that can be exploited.

Improper Authorization: Test for issues where users can escalate their privileges, access unauthorized
data, or perform actions they shouldn’t be allowed to do.

Code Injection & Malware: Look for code injection vectors (e.g., in input fields) that could allow
attackers to execute arbitrary code or inject malware.

Test for Rooted or Compromised Devices

Many apps include root detection mechanisms to prevent use on rooted or compromised devices.
Test if the app can bypass these checks and if sensitive data or features are accessible on such devices.

Final Reporting

• Document your findings in a comprehensive report that includes:
• Description of each identified vulnerability.
• Severity ratings (e.g., high, medium, low).
• Suggested mitigation strategies.
• Screenshots or evidence supporting the findings.

OFFENSO HACKERS ACADEMY 123

6.2. Common Tools Used in Android Pentesting

• APKTool: For decompiling and analyzing APK files.
• Jadx: A decompiler to transform APKs into readable Java code.
• Burp Suite: For intercepting and modifying HTTP/HTTPS requests between the app and

backend services.
• Frida: A dynamic instrumentation toolkit for modifying apps at runtime and analyzing their

behavior.
• Drozer: A comprehensive security testing framework for Android apps.
• Wireshark: A network protocol analyzer to capture and analyze network traffic.
• MobSF (Mobile Security Framework): An automated tool for mobile app security testing,

offering both static and dynamic analysis.
• Objection: A runtime mobile exploration toolkit for iOS and Android that can be used to test

mobile apps.
• Xposed Framework: Used for running modified apps with different security configurations on

a rooted device.

6.3. Understanding Android Architecture

Android architecture refers to the structure and design patterns used to develop Android applications.
It focuses on the components, layers, and principles that guide the development of scalable,
maintainable, and efficient mobile applications. Android's architecture has evolved over the years, but
the key components and design principles have remained consistent.

OFFENSO HACKERS ACADEMY 124

6.3.1. Key Components of Android Architecture:

• Application Layer:

This is the topmost layer of the Android system, which contains the Android applications and their
user interfaces. An application interacts with the underlying system through APIs provided by Android.

• Activities and Fragments:

Activity: Represents a single screen with a user interface (UI). It's a core component for user
interaction.

Fragment: A modular section of an activity that can be combined and reused across activities.

• Services:

Services are components that run in the background and perform tasks without a UI. They can
run indefinitely or until the task is complete. For example, music players or network download
managers run as services.

• Broadcast Receivers:

A component that listens for system-wide or application-specific broadcast messages and reacts
to them, such as handling notifications, alarms, or system events.

• Content Providers:

They provide a structured interface for managing shared data. Through content providers,
applications can interact with data from other applications securely. For example, accessing the
system’s contacts or media database.

6.3.2. Android System Architecture:

OFFENSO HACKERS ACADEMY 125

Android's system architecture can be described as a stack of layers, each responsible for different
tasks:

• Linux Kernel:

The base layer of Android’s architecture, which provides low-level system functions such as
security, memory management, process management, and networking.

It includes hardware abstraction for communication with device hardware.

• Hardware Abstraction Layer (HAL):

This layer provides an abstraction layer between the device's hardware and the Android OS,
allowing Android to support a wide range of devices with different hardware configurations.

• Android Runtime (ART) & Dalvik (Legacy):

The Android Runtime (ART) is responsible for executing Android applications. It uses Just-In-Time
(JIT) compilation to optimize code execution. Dalvik was the older virtual machine used in Android
before ART was introduced.

• Libraries:

Android includes a set of native libraries built on top of the Linux kernel, such as:

Surface Manager: Manages display buffers.

SQLite: A lightweight database engine for persistent data storage.

WebKit: A rendering engine for web content.

OpenGL: A framework for rendering 2D and 3D graphics.

• Application Framework:

This layer provides high-level services to applications, including UI components (e.g., buttons, text
views), location-based services, and resource management.

Key components include:

View System: Handles rendering UI components and user input.

Content Providers: Allows sharing data between applications.

Activity Manager: Manages application lifecycle and tasks.

Window Manager: Manages the display and input events.

• Applications:

At the top of the architecture are the user applications (e.g., camera, messaging, music apps,
third-party apps), which use the Android framework's APIs and libraries to create functional UIs
and access device resources.

OFFENSO HACKERS ACADEMY 126

6.3.3. Android Architecture Patterns:

• Model-View-Controller (MVC):

This pattern is widely used in Android development. It separates the application logic (model), user
interface (view), and the controller which manages the interaction between the two.

• Model-View-ViewModel (MVVM):

This is a more modern architecture pattern used in Android. The ViewModel holds the UI-related
data and handles business logic. The View interacts with the ViewModel to retrieve data and
update the UI.

OFFENSO HACKERS ACADEMY 127

• Clean Architecture:

A layered architecture that separates code into different layers: data, domain, and presentation.
This makes it easier to maintain and test the app, as well as separate concerns between different
functionalities.

• Repository Pattern:

This pattern is used for data management. A repository manages data operations from different
sources (e.g., network, database) and provides a clean API for the rest of the app to access the
data.

OFFENSO HACKERS ACADEMY 128

6.3.1. Jetpack Architecture Components:

Jetpack is a suite of Android libraries that help with app development and follow best practices for
architecture. Some important components include:

Room: A persistence library that provides an abstraction layer over SQLite.

LiveData: A lifecycle-aware data holder that allows the UI to observe data and update accordingly.

ViewModel: A lifecycle-aware component that holds and manages UI-related data to survive
configuration changes

Navigation: A library for managing app navigation, simplifying fragment transitions.

WorkManager: A library for managing background tasks that need to be guaranteed to run, such as
periodic tasks or one-time jobs.

Paging: A library for loading large datasets efficiently.

6.3.2. Best Practices for Android Architecture:

Separation of Concerns: Divide the application into distinct parts (UI, business logic, data) to make the
code easier to maintain.

Model-View-ViewModel (MVVM): Adopt this pattern for a clean architecture, as it allows better
separation between UI and business logic.

Use LiveData and ViewModel: Leverage these components to handle UI-related data in a lifecycle-
aware manner.

Use Dependency Injection: Use frameworks like Dagger or Hilt to manage dependencies in a clean and
testable way.

OFFENSO HACKERS ACADEMY 129

6.4. Android Lifecycle

The Android Lifecycle refers to the sequence of states that an Android activity goes through from its
creation to its destruction. It is managed by the Activity Lifecycle Methods, which allow developers to
control what happens when an activity starts, pauses, resumes, stops, or is destroyed.

Activity Lifecycle Stages:

• onCreate() – Called when the activity is first created. Used for initialization.
• onStart() – Called when the activity becomes visible.
• onResume() – Called when the activity is ready for user interaction.
• onPause() – Called when the activity is partially obscured (e.g., another app opens).
• onStop() – Called when the activity is no longer visible.
• onDestroy() – Called before the activity is destroyed.
• onRestart() – Called when restarting an activity after it was stopped.

OFFENSO HACKERS ACADEMY 130

How the Lifecycle Works in Different Scenarios

v When launching an app:

• onCreate() → onStart() → onResume()

v When pressing the Home button:

• onPause() → onStop()

v When reopening the app from the background:

• onRestart() → onStart() → onResume()

v When pressing the Back button:

• onPause() → onStop() → onDestroy()

v When a phone call or notification interrupts the app:

• onPause() is called, but onStop() may not be called if the user quickly returns.

Why is the Android Lifecycle Important?

• Prevents memory leaks by releasing resources when not needed.
• Improves performance by pausing heavy tasks when the activity is in the background.
• Saves user data by handling configuration changes (e.g., screen rotations).
• Enhances user experience by ensuring a smooth transition between activities.

Improper handling of lifecycle events can lead to security vulnerabilities.

• Data Leakage – If sensitive data (like passwords or tokens) is stored in an activity and not
cleared in onPause() or onStop(), attackers can retrieve it if the app is running in the
background.

• Session Hijacking – If user sessions remain active when the app goes into the background
(onStop()), an attacker with physical access can resume the session without re-
authentication.

• Memory Leaks & Exploits – Poor lifecycle management can cause memory leaks, making the
app crash or expose data to malicious apps.

• Code Execution & Injection – Attackers can exploit improperly handled lifecycle events to
inject malicious code or manipulate app behaviour.

OFFENSO HACKERS ACADEMY 131

6.5. Android App Permissions and Security Model

Android's permission and security model plays a crucial role in protecting user privacy and ensuring
that apps only have access to the resources and data they need, as well as preventing malicious
behavior. This model is based on a combination of runtime permissions, sandboxing, and system-level
security features.

Here’s an overview of the key aspects of Android's app permission and security model:

App Sandboxing

Concept: Android applications run in a sandboxed environment, meaning each app operates in its own
process and has limited access to the system and other apps. Each app is isolated from the others and
from the underlying operating system.

Process Isolation: Every Android app runs as an independent process with its own memory space,
preventing unauthorized access to other apps’ data and resources.

User Identification: Each app is assigned a unique user ID (UID), ensuring that apps cannot interfere
with each other or access each other’s files unless explicitly allowed.

Android Permissions

Android uses a permission-based model to control app access to sensitive resources (e.g., location,
contacts, camera, etc.). Permissions are divided into different categories:

Normal Permissions: Permissions that don’t pose a significant risk to user privacy or device security
(e.g., setting the wallpaper). These permissions are granted automatically during installation.

Dangerous Permissions: Permissions that can potentially affect the user's privacy or security (e.g.,
access to location, contacts, camera, etc.). These permissions require explicit user consent at runtime
(Android 6.0 and higher).

Permission Groups

Permissions are categorized into permission groups. When an app requests a permission, Android
checks if it belongs to a dangerous permission group. If so, the app needs to request user consent to
access it.

OFFENSO HACKERS ACADEMY 132

Some common permission groups:

• Storage: Access to the device’s internal and external storage.
• Location: Access to the device’s GPS and other location-based services.
• Camera: Access to the device’s camera for capturing photos or videos.
• Contacts: Access to the user's contacts.
• Microphone: Access to the device’s microphone.
• Phone: Access to phone features like making calls, reading call logs, etc.

Runtime Permissions

Concept: Starting from Android 6.0 (Marshmallow), Android introduced runtime permissions. Unlike
previous versions, where permissions were granted at install time, runtime permissions require that
apps ask the user for permission while the app is running.

Flow: The app declares the permissions it needs in the AndroidManifest.xml.

At runtime, the app checks if the permission is granted (using ContextCompat.checkSelfPermission()).

If the permission is not granted, the app requests it using ActivityCompat.requestPermissions().

The user is prompted with a dialog asking whether they allow or deny the requested permission.

Permissions Request Example:

if (ContextCompat.checkSelfPermission(this, Manifest.permission.ACCESS_FINE_LOCATION) !=
PackageManager.PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(this, new
String[]{Manifest.permission.ACCESS_FINE_LOCATION}, LOCATION_PERMISSION_REQUEST_CODE);

}

Permission Management

Permission Requests: If an app requests a dangerous permission and the user denies it, Android offers
the option to show a rationale (explanation) as to why the permission is necessary.

Permissions Revocation: Users can revoke permissions at any time through the device’s settings
(Settings > Apps > [App Name] > Permissions).

Granting Permissions in Settings: Users can manage and modify app permissions at any time by going
into Settings > Apps > [App Name] > Permissions.

Scoped Storage

Scoped Storage (introduced in Android 10) restricts how apps can access the file system, enhancing
user privacy and security.

Private Storage: Each app has its own private directory where it can store data.
Shared Storage: Apps have limited access to shared storage, and access to files in shared locations
(like photos or downloads) is managed through specific APIs (e.g., MediaStore).
Apps can no longer access arbitrary files on the device’s file system directly, and they must use
dedicated APIs to request access to external storage for media files, documents, etc.

OFFENSO HACKERS ACADEMY 133

Android App Signatures

App Signing: Every Android app must be signed with a digital certificate. This ensures that the app
comes from a known developer and has not been tampered with.

During installation, the system verifies the app’s signature to ensure its integrity and authenticity.

Key Management: Developers are responsible for managing their app's keys. If an app is updated, the
signature of the update must match the original app's signature.

Android Security Features

App Permissions Model: As explained, apps must request permissions for sensitive data. This reduces
the potential for apps to misuse data and allows users to control what they share.

App Sandboxing: Each app runs in its own environment with limited access to the rest of the system,
ensuring that one app can’t interfere with another.

Code Obfuscation: Developers can use tools like ProGuard or R8 to obfuscate their app's code, making
it harder for attackers to reverse-engineer the code and identify vulnerabilities.

Secure Storage: Android offers secure storage options, such as Keystore and
EncryptedSharedPreferences, for storing sensitive data like passwords or tokens.

Biometric Authentication: Android provides APIs to use biometrics (fingerprint, face recognition) for
authentication, which increases the security of sensitive data and app access.

Security Best Practices for Developers

Limit Permissions: Only request the permissions necessary for the app’s functionality. Avoid asking for
unnecessary permissions that might harm user trust.

Secure API Communication: Always use secure communication (e.g., HTTPS, SSL/TLS) when
transmitting sensitive data over the network.

Data Encryption: Encrypt sensitive data, both in storage and in transit, to prevent unauthorized access.

Minimize Data Collection: Avoid collecting excessive amounts of personal data unless absolutely
required for the app's core functionality.

Regular Updates: Ensure that the app is regularly updated to patch security vulnerabilities and to
stay up-to-date with Android's evolving security features.

OFFENSO HACKERS ACADEMY 134

6.6. Analyzing APKs And Reverse Engineering

Analyzing APKs (Android Package Kits) and reverse engineering is an important part of understanding
how Android apps work, inspecting security vulnerabilities, and ensuring app integrity. While reverse
engineering can be used for legitimate purposes like security testing or learning, it can also be
exploited for malicious activities, so it’s important to approach this ethically and responsibly.

What is an APK?

An APK (Android Package Kit) is the file format used by Android to distribute and install applications.
It contains all the resources, code, and assets needed to run the app on an Android device.

OFFENSO HACKERS ACADEMY 135

An APK file typically includes:

Java code (compiled into .dex files)

Resources (e.g., images, layouts, and strings)

Manifest file (AndroidManifest.xml)

Signed certificate for verifying the authenticity of the app

Native libraries (optional)

Why Analyze and Reverse Engineer APKs?

There are several reasons for analyzing or reverse-engineering APKs:

Security Audits: To identify potential vulnerabilities in an app, such as improper handling of sensitive
data, insecure communication, or weak authentication.

App Compatibility Testing: Understanding how third-party apps work in a particular environment.

Learning: Examining how an app is built to understand coding practices and Android architecture.

Cracking: This is often illegal and unethical, but it involves removing licensing checks, ads, or other
protections.

Malware Detection: Identifying whether an APK contains malicious code, spyware, or Trojans.

Steps to Analyze and Reverse Engineer APK Files

Reverse engineering an Android APK (Android Package) file allows cybersecurity professionals to
analyze its contents for vulnerabilities, malware, or security flaws. Below are the steps to analyze and
reverse engineer an APK file:

OFFENSO HACKERS ACADEMY 136

• Obtaining the APK File

You can obtain the APK through:

Official sources: Downloading the APK from trusted app stores (though this is rare).

Third-party websites: Downloading APK files from third-party repositories (not recommended for
security reasons).

Extracting from a Device: Using tools like adb (Android Debug Bridge) to pull APKs from a device that
has the app installed.

Decompiling APK to Readable Code

The primary task in reverse-engineering is to turn the APK's compiled code back into something
human-readable. This usually involves two key steps: extracting resources and decompiling the code.

• Extracting Resources

To extract the files within an APK, you can use:

APKTool: A popular tool for disassembling APK files. It decodes resources and manifests into a
human-readable form, but it doesn’t handle code decompilation. apktool d app.apk

After running this, you will get:

AndroidManifest.xml: The app’s manifest.

Resources like images, XML layout files, and strings in a decoded form.

JADX: A decompiler that converts .dex files into readable Java code.

It provides a GUI to inspect and analyze the APK’s source code.

You can install it and run it directly from the command line or use the GUI.

jadx -d output_folder app.apk

JD-GUI: A tool for decompiling Java class files into human-readable Java code. It works well with
.jar files but can also be used after converting DEX to JAR.

Repackaging the APK

After analysis, you can modify the APK and recompile it back to an APK file:

APKTool: Rebuild the app after modification by running:

apktool b app_folder -o new_app.apk

Sign the APK: If you plan to install a modified APK on a device, you must sign it, as Android only
accepts signed APKs for installation. You can use keytool (from the JDK) and jarsigner to sign the
APK.

OFFENSO HACKERS ACADEMY 137

• Static Analysis and Dynamic Analysis:

Once you have access to the APK’s contents (code, resources), there are several techniques you
can use for further analysis.

Static Analysis

This involves analyzing the APK without actually executing it. You can use various tools and
techniques for this:

Inspect the Manifest: The AndroidManifest.xml file contains important information about app
components (e.g., activities, services, permissions) and can reveal a lot about app behavior.

Code Review: After decompiling the code (using tools like JADX), you can review the Java source
code to understand how the app functions, looking for vulnerabilities or malicious behaviors.
Permissions Review: Analyze which permissions the app requests. Excessive or unnecessary
permissions could indicate that the app is collecting more data than needed.

Obfuscation Detection: Obfuscation makes the code harder to read. Tools like ProGuard or R8 can
obfuscate code. If code is obfuscated, try to identify class and method names and understand its
logic.

Dynamic Analysis

This involves running the APK on a device or emulator to observe its runtime behavior. Common
tools for dynamic analysis include:

Android Debug Bridge (ADB): A powerful command-line tool to interact with the device and
observe app behavior.
You can use ADB to capture logs, install/uninstall APKs, and check the app’s network activities.

adb logcat

Common Reverse Engineering Tasks and Use Cases

• Finding Vulnerabilities

You can find vulnerabilities in APKs by:

Looking for hardcoded credentials, API keys, or other secrets in the code or resources.

Inspecting how the app handles sensitive data (e.g., passwords or personal info), and whether it
uses proper encryption.

Checking how the app performs input validation to identify potential injection attacks.

OFFENSO HACKERS ACADEMY 138

• Cracking APKs

Some people reverse-engineer APKs to:
 Remove licensing checks: Bypassing license verifications to make the app free or full-featured.

Disable ads: Removing ads or monetization features from the app.

Crack paid apps: Disabling payment or unlocking premium features without purchasing.

Note: Cracking APKs is illegal and unethical unless you have explicit permission from the app
developer for security testing or other legitimate purposes.

• Malware Analysis

Security professionals often reverse-engineer APKs to detect malware:

By looking for suspicious behavior, such as accessing unnecessary system resources, contacting
unknown servers, or performing other potentially malicious actions. Using static analysis to
check for packed code (which could hide the real functionality) or signs of obfuscation to prevent
analysis.

6.7. Common Vulnerabilities in Android Apps

Android apps are often vulnerable to various types of security threats. Here are some common
vulnerabilities found in Android applications:

OFFENSO HACKERS ACADEMY 139

Insecure Data Storage

Issue: Storing sensitive information (like passwords, tokens, or personal data) unencrypted in local
storage, such as SharedPreferences, SQLite databases, or files.

Impact: Attackers can extract this data if they gain access to the device, posing a risk of identity theft,
unauthorized access, or data breach.

Solution: Always encrypt sensitive data before storing it and avoid storing critical information like
passwords on the device.

Improper Implementation of WebView

Issue: Misconfiguration of WebView components can allow attackers to inject malicious scripts into
WebViews, potentially leading to code execution or unauthorized access.

Impact: Can enable Cross-Site Scripting (XSS) attacks or allow malicious websites to steal cookies,
session tokens, and personal information.

Solution: Use secure methods to load URLs, avoid loading untrusted URLs, and disable JavaScript when
unnecessary.

Insecure Intents

Issue: Insecure handling of intents can allow attackers to inject malicious intents into the app,
potentially gaining access to sensitive data or functionality.

Impact: If intents are not properly validated or protected, they can be exploited by attackers to
manipulate app behavior.

Solution: Validate all incoming intents and use explicit intents when possible to limit the exposure of
data and services to untrusted apps.

OFFENSO HACKERS ACADEMY 140

Insecure Communication (Lack of Encryption)

Issue: Sending sensitive data over unencrypted HTTP instead of HTTPS.

Impact: Data such as passwords, tokens, and credit card information can be intercepted by attackers
using Man-in-the-Middle (MITM) attacks.

Solution: Always use HTTPS to encrypt communication. Implement SSL pinning to further secure
communication channels.

Inadequate Logging and Monitoring

Issue: Storing sensitive information in logs or failing to properly secure and monitor logs.

Impact: Sensitive data may be exposed through log files, and security incidents may go unnoticed.

Solution: Avoid logging sensitive information and implement proper log management practices, such
as encryption and access controls.

OFFENSO HACKERS ACADEMY 141

Insecure Code

Issue: Apps that don't obfuscate their code are easier to reverse-engineer, exposing the app’s internal
logic, cryptographic keys, and API keys.

Impact: Attackers can extract valuable information, reverse-engineer API calls, and exploit
vulnerabilities in the app.

Solution: Use code obfuscation tools like ProGuard or R8 to make reverse engineering harder.

Improper Authorization and Authentication

Issue: Weak authentication mechanisms or improper authorization checks can allow unauthorized
users to access restricted areas of an app.

Impact: An attacker could bypass authentication, gain unauthorized access to sensitive data, or
perform actions on behalf of legitimate users.

Solution: Implement strong, multi-factor authentication and ensure proper authorization checks on
the server-side for sensitive operations.

Excessive Permissions

Issue: Apps that request unnecessary permissions (like access to the camera, contacts, or location) can
lead to data leaks or misuse.

Impact: Attackers can exploit these permissions to access sensitive data, track users, or perform
malicious actions.

Solution: Follow the principle of least privilege by only requesting the permissions necessary for the
app to function. Always provide justification for permissions to users.

Improper Handling of Sensitive Data

Issue: Failure to securely handle sensitive data, such as session tokens or user credentials, in memory,
can expose it to potential theft.

Impact: Attackers could extract sensitive information from app memory or through an insecure
process (e.g., log files).

Solution: Use secure storage mechanisms and clear sensitive data from memory when no longer
needed. Avoid logging sensitive information.

OFFENSO HACKERS ACADEMY 142

Insecure Third-Party Libraries

Issue: Using outdated or vulnerable third-party libraries without proper vetting or regular updates.

Impact: Exploits in libraries can be leveraged by attackers to compromise the app’s security.

Solution: Regularly update third-party libraries, and ensure they come from trusted sources. Use tools
like OWASP Dependency-Check to scan for known vulnerabilities.

Lack of Proper Session Management

Issue: Improper session management can allow attackers to hijack sessions or maintain sessions for
too long, allowing unauthorized access to accounts.

Impact: An attacker could hijack a user’s session and impersonate them, gaining unauthorized access
to sensitive data.

Solution: Use secure, short-lived tokens for authentication and ensure that sessions expire after
inactivity.

Improper Handling of Updates

Issue: Failure to properly verify or handle updates, potentially allowing attackers to install malicious
updates.

Impact: Attackers could push malicious code to the app via a fake update, leading to data leakage or
exploitation.

Solution: Verify updates via secure channels (e.g., app stores, trusted update mechanisms) and ensure
updates come from trusted sources.

OFFENSO HACKERS ACADEMY 143

Reverse Engineering and Decompilation

Issue: Android apps can be reverse-engineered using tools like JADX or APKTool to extract sensitive
data, API keys, or application logic.

Impact: Attackers could extract secrets, bypass security controls, or abuse functionality.

Solution: Implement code obfuscation, avoid storing secrets in the app, and use techniques like native
code (NDK) to increase difficulty in reverse engineering.

Weak Cryptography

Issue: Using outdated or weak cryptographic algorithms (such as MD5, SHA1) to protect data.

Impact: Cryptographic weaknesses can lead to data being easily decrypted or compromised.

Solution: Use strong cryptographic algorithms like AES-256, SHA-256, and RSA for data protection.

OFFENSO HACKERS ACADEMY 144

Exposure of Internal APIs

Issue: Exposing internal APIs to the outside world without proper security or validation.

Impact: Attackers can access unprotected APIs, potentially gaining access to sensitive data or
application functions.
Solution: Secure APIs by using authentication, authorization, and encryption. Keep internal APIs
private and avoid exposing them unnecessarily.

OFFENSO HACKERS ACADEMY 145

Introduction To Active Directory
Active Directory (AD) is a directory service developed by Microsoft for managing users, computers,
and other devices within a network. It is primarily used in enterprise environments to manage and
organize network resources, authentication, and authorization.

7.1. Components of Active Directory:

Active Directory (AD) is a comprehensive directory service used by Windows-based networks to
manage users, computers, and other resources. AD consists of several key components that work
together to provide centralized management, security, and policy enforcement across the network.

OFFENSO HACKERS ACADEMY 146

Domain Controllers (DCs): Servers that store the AD database and are responsible for authenticating
users and computers in the domain. In simple terms, it’s like a gatekeeper that verifies who you are
and what you’re allowed to do when you try to access resources in a network.

Organizational Units (OUs): Containers that organize objects like users and computers into logical
groups. They allow administrators to logically group objects based on criteria such as department,
location, or function. OUs make it easier to manage and apply settings to groups of objects. For
example, you can create separate OUs for different departments like HR, IT, and Sales, and manage
them independently.

OFFENSO HACKERS ACADEMY 147

Trusts: Relationships between domains to allow access to resources across different domains. In
Active Directory (AD), domain trust refers to a relationship established between two domains that
allows users in one domain to access resources in another domain. This trust relationship ensures
secure authentication and authorization across domains within a forest or between forests. Trusts
simplify resource sharing and management in multi-domain environments.

Active Directory Users and Computers (ADUC): is a Microsoft Management Console (MMC) tool
used by administrators to manage and configure objects within Active Directory (AD), such as users,
groups, and computers. It is one of the most commonly used tools for AD management. ADUC
provides a graphical interface that allows administrators to create, modify, and delete AD objects.
For example, an admin can create new user accounts, assign users to groups, manage computer
accounts, and configure user properties (like email or job title).

Group Policy Objects (GPOs): Rules that control the configuration of operating systems, applications,
and user settings across all computers in the domain. GPOs are used to manage and configure

OFFENSO HACKERS ACADEMY 148

various settings, such as password policies, desktop configurations, software installations, and
security settings across all machines and users in an Active Directory domain.

GPO Structure and Flow:

1. Administrator: The admin creates and configures the GPO in the Group Policy Management
Console (GPMC). This is where GPOs are linked to specific AD containers (like domains or OUs).

2. Active Directory (AD): GPOs are stored in AD and are associated with particular organizational
units or the domain itself. They can be linked to multiple containers, and the policy is applied to all
the users and computers in those containers.

3. Users and Computers:

• Users: The GPO settings (like password policies or desktop configurations) will apply
to the user when they log in.

• Computers: The GPO settings (like security policies or software installations) will
apply when the computer starts up or when it is refreshed.

7.2. Ad vulnerabilities

OFFENSO HACKERS ACADEMY 149

Active Directory (AD) is an essential component in enterprise networks, but it can also be vulnerable
to various types of attacks. Here are some common AD vulnerabilities

Privilege Escalation

Misconfigured Permissions: Incorrectly set permissions on objects within AD can allow low-privileged
users to escalate their rights. For example, if users are mistakenly added to powerful groups like
Domain Admins or Enterprise Admins, they can gain significant control over the domain.

Overly Permissive Delegation: Delegating too many rights to certain users or groups can lead to
attackers exploiting these privileges for lateral movement and privilege escalation.

Kerberos Vulnerabilities

Pass-the-Ticket (PTT): Attackers can steal Kerberos tickets from memory (using tools like Mimikatz)
and use them to impersonate a legitimate user. This enables lateral movement or access to resources
in the domain.

Golden Ticket Attack: Attackers can forge a Kerberos TGT (Ticket Granting Ticket) if they compromise
the Key Distribution Center (KDC) or obtain the KRBTGT account's password hash. With a Golden
Ticket, attackers can gain access to any service or system within the AD domain.

Silver Ticket Attack: Similar to a Golden Ticket, but it targets service tickets rather than TGTs. If an
attacker compromises the service account or its credentials, they can forge tickets to access specific
services.

OFFENSO HACKERS ACADEMY 150

Weak Passwords

Brute Force Attacks: Weak or common passwords, particularly on administrative accounts, make it
easier for attackers to brute-force credentials. This is often due to weak password policies or users
reusing passwords across different systems.

Lack of Multi-Factor Authentication (MFA): Without MFA, a compromised password could lead directly
to an attacker gaining unauthorized access, especially to high-privilege accounts.

Service Account Misconfigurations

Overly Permissive Service Accounts: Service accounts that run with high privileges, but are improperly
managed, pose a risk. Attackers could exploit such accounts to escalate privileges or access sensitive
resources.

Service Account Passwords: Often, service account passwords are static or poorly protected, making
them easier targets for attackers. If an attacker is able to compromise the password of a high-
privileged service account, they can gain escalated access.

Unpatched Vulnerabilities

Unpatched AD Servers and Workstations: Active Directory relies on the underlying Windows Server
and client operating systems. Vulnerabilities in these systems, such as those in SMB, Netlogon, or
Kerberos, can be exploited by attackers. For example, the Netlogon Elevation of Privilege vulnerability
(CVE-2020-1472) allowed attackers to escalate privileges by exploiting a flaw in the Netlogon protocol.

End-of-Life Versions: Running outdated or unsupported versions of Windows Server, like Windows
Server 2008 or older, can expose AD environments to known exploits that have been patched in newer
versions.

Lateral Movement and Enumeration

Insecure SMB and RPC: Services like SMB (port 445) and RPC (Remote Procedure Call) can be used by
attackers to move laterally within the network and access different systems once they have
compromised a single machine. Tools like Resurrection and Mimikatz can be used to steal credentials
or escalate privileges over the network.

Weak Group Membership Policies: Attackers can enumerate user and group memberships, including
high-privileged groups such as Domain Admins, Enterprise Admins, and Schema Admins. If they
discover a user with inappropriate membership, they can escalate privileges and gain control of the
domain.

OFFENSO HACKERS ACADEMY 151

Lack of Security Monitoring and Auditing

Inadequate Logging: If AD is not configured to log all critical actions (like login attempts, changes to
group memberships, or privilege escalations), attackers can operate unnoticed for extended periods.

Disabled Security Audits: Disabling or improperly configuring security audits makes it harder to detect
suspicious activities. Monitoring tools can be used to alert on malicious actions or unauthorized
changes within AD, but without adequate auditing, attacks can go undetected.

Kerberos Service Principal Name (SPN) Enumeration

Exposing Service Accounts: Attackers can enumerate SPNs (Service Principal Names) in AD to discover
service accounts, which may lead to discovering service account passwords or weak credentials. By
identifying services associated with privileged accounts, attackers can attempt to exploit those
services to escalate privileges.

Unsecured Trusts Between Domains

Misconfigured Domain Trusts: If domain trusts are misconfigured, attackers could exploit them to gain
access to resources in other trusted domains. Trusts are meant to allow access between trusted
domains, but an attacker can potentially manipulate trust relationships to gain domain admin access
across multiple domains.

Transitive Trusts: A misconfigured trust in one domain can lead to a compromise in another domain
via transitive trust. This can extend an attacker’s reach across an entire network.

End-User Device Vulnerabilities

Compromised Workstations: If a user’s workstation is compromised (through phishing or malware),
an attacker may be able to extract stored credentials, including those from the Windows Credential
Manager or from the NTLM hash. These credentials can be used to perform attacks like Pass-the-Hash
or Pass-the-Ticket.

OFFENSO HACKERS ACADEMY 152

Insecure LDAP (Lightweight Directory Access Protocol)

LDAP Injection: An attacker can manipulate LDAP queries by injecting malicious input, potentially
gaining unauthorized access to AD information. For example, improperly sanitized inputs in web
applications that query AD could expose sensitive data or allow attackers to escalate privileges.

Unencrypted LDAP Traffic: Unencrypted LDAP traffic (LDAP over port 389) can be intercepted, allowing
attackers to capture and analyze sensitive data, including usernames and passwords.

Insecure DNS Configuration

DNS Spoofing and Hijacking: If an attacker can manipulate DNS records for the domain, they can
redirect traffic or intercept communication. This could allow attackers to perform man-in-the-middle
attacks or redirect legitimate user traffic to malicious sites or services.

Insecure DNS Zone Transfers: In certain misconfigured environments, attackers can exploit unsecured
DNS zone transfers to gather valuable information about the domain's infrastructure.

Lack of Least Privilege Enforcement

Excessive Permissions for Users and Groups: If AD administrators do not adhere to the principle of
least privilege, users may have more permissions than they need. Attackers can exploit this to gain
access to sensitive information, systems, or data.

Excessive Use of Domain Admin Accounts: Allowing too many accounts to be members of high-
privileged groups like Domain Admins or Enterprise Admins can increase the attack surface and make
it easier for attackers to gain elevated privileges.
Improper Group Policy Object (GPO) Configuration

Unprotected GPOs: If GPOs that manage security settings or account configurations are not properly
protected, they can be altered by attackers to weaken security settings across the entire domain.

GPO Misconfigurations: Misconfigurations of GPOs could expose sensitive information or change
system behaviors in a way that benefits attackers.

OFFENSO HACKERS ACADEMY 153

7.3. AD Enumeration Techniques

AD enumeration refers to the process of gathering information from an Active Directory environment
to identify potential weaknesses or targets for further exploitation. This can be done both manually
and with automated tools.

7.3.1. Common techniques for AD enumeration include

LDAP Queries:

Lightweight Directory Access Protocol (LDAP) is a protocol used by AD to store and retrieve directory
information. Tools like LDAPSearch or PowerView can be used to query AD for information like user
accounts, group memberships, organizational units, and other domain objects.

Example: ldapsearch -x -b "dc=example,dc=com" "(objectClass=user)"

Netcat or PowerShell:

Attackers can use Netcat or PowerShell scripts to perform domain enumeration or query domain
controllers for information such as user accounts or groups.

PowerShell Cmdlets like Get-ADUser and Get-ADGroup are commonly used for querying AD from a
Windows environment.

OFFENSO HACKERS ACADEMY 154

BloodHound:

BloodHound is an Active Directory enumeration tool that helps identify attack paths and privilege
escalation opportunities by mapping out the relationships and permissions between users, groups,
and computers.

It is typically used for identifying and visualizing attack vectors that could lead to domain admin access.

Nmap and SMB:

Nmap can be used to scan a network for open ports and services, including SMB (Server Message
Block) ports like 445. It can also detect domain controllers and provide information about the AD
structure.

SMB enumeration can also reveal domain names, machine names, user accounts, and group
memberships.

Enumerating Group Memberships:

OFFENSO HACKERS ACADEMY 155

Group memberships are a common target during enumeration because members of privileged groups
(e.g., Domain Admins, Enterprise Admins) have elevated access.

Tools like PowerView and Net group can help identify users and groups within AD.

Domain Trusts:

Attackers may enumerate domain trusts between domains to identify potential entry points into other
domains.

Netdom and PowerView can be used to list and investigate trust relationships.

DNS and SPN Enumeration:

DNS (Domain Name System) enumeration can reveal information about domain controllers, servers,
and other resources in the AD environment.

Service Principal Name (SPN) enumeration can identify which services are running on which hosts and
can provide information about service accounts and potential attack vectors.

Kerberos Enumeration:

Kerberos-based attacks like Kerberos ticket enumeration can be used to identify valid accounts,
groups, and service tickets by querying for Kerberos tickets associated with AD accounts.

Tools like Kerberos Enum or Impacket can be used for this purpose.

Username Enumeration via Kerberos is shown below:

OFFENSO HACKERS ACADEMY 156

7.3.2. Tools for AD Enumeration

PowerView: A PowerShell tool that provides a set of functions for enumerating AD domains, users,
groups, and other resources. It is a versatile tool for enumerating and analyzing Active Directory
environments, providing penetration testers and red teamers with deep insights into domain
structures and configurations.

BloodHound: It is a powerful tool designed to identify and map privilege escalation paths within
Active Directory (AD) environments. It provides a visual representation of the relationships,
permissions, and potential attack paths in a domain, making it invaluable for penetration testers and
red teamers.

OFFENSO HACKERS ACADEMY 157

Impacket: A Python-based toolkit that includes a variety of scripts and libraries for AD enumeration
and Kerberos- related attacks. Impacket is an essential toolkit for interacting with AD and conducting
post-exploitation activities.

Nmap: A network scanner that can be used to identify services and AD domain controllers on a
network. It’s a useful tool for network administrators and security professionals to understand the
layout and health of their network.

OFFENSO HACKERS ACADEMY 158

Responder: It is a powerful tool used in penetration testing to exploit weaknesses in network
protocols such as SMB, NetBIOS, and LLMNR (Link-Local Multicast Name Resolution). It intercepts
and manipulates network traffic to gather sensitive information like credentials from a target Active
Directory (AD) environment.

7.4. Privilege escalation in Active Directory

Privilege escalation in Active Directory (AD) refers to the process of gaining higher levels of access or
privileges within an AD environment, often with the aim of compromising sensitive resources or
gaining full control over the network. Privilege escalation attacks are one of the most common
techniques used by attackers after they have gained initial access to a system or network.

There are two types of privilege escalation:

• Vertical Privilege Escalation: Gaining higher privileges within the same system or domain
(e.g., from a regular user to an admin).

• Lateral Privilege Escalation: Moving across systems or domains to escalate privileges
(e.g., from a user account on one machine to a domain admin account).

In an Active Directory environment, privilege escalation typically targets gaining domain administrator
access.

OFFENSO HACKERS ACADEMY 159

7.4.1. Common methods of privilege escalation in AD

Misconfigured Permissions

Excessive Permissions on AD Objects: AD objects such as users, groups, computers, and organizational
units (OUs) are granted permissions. If an attacker finds an object with overly permissive rights (e.g.,
a regular user being granted write or full control permissions over a sensitive group), they can escalate
their privileges by modifying group memberships or changing attributes.

Abuse of Group Memberships: Attackers can attempt to add themselves to privileged groups like
Domain Admins, Enterprise Admins, or Administrators if they have the necessary permissions. By
gaining access to these groups, they obtain elevated privileges across the domain.

Kerberos Ticket Attacks

A Kerberos ticket attack is a method used by attackers to exploit the Kerberos authentication
protocol to gain unauthorized access or escalate privileges within an Active Directory (AD)
environment. Kerberos is a secure protocol used in AD for authenticating users and services.

Pass-the-Ticket (PTT): If an attacker manages to steal a valid Kerberos ticket (usually using tools like
Mimikatz), they can use it to authenticate to services and impersonate the user or service the ticket
represents. This can allow lateral movement and escalation of privileges within the network.

Golden Ticket Attack: In a Golden Ticket attack, an attacker with access to the KRBTGT account's NTLM
hash can forge a Ticket Granting Ticket (TGT), which grants access to all services and resources in the
domain. This is a powerful way to maintain persistent access with elevated privileges.

Silver Ticket Attack: Unlike a Golden Ticket, a Silver Ticket is used to gain access to a specific service
rather than to the entire domain. An attacker can compromise service account credentials and forge
a ticket that grants them access to particular resources.

OFFENSO HACKERS ACADEMY 160

DCOM and WMI (Windows Management Instrumentation) Abuse

DCOM (Distributed Component Object Model) and WMI are technologies that allow remote
management of Windows systems. Attackers can exploit misconfigured permissions or use tools like
PowerShell to access and modify sensitive information or remotely escalate privileges.

Misconfigured Group Policy Objects (GPOs)

Unprotected GPOs: GPOs that manage security settings or privileges in AD, if misconfigured or not
properly protected, can be modified by low-privileged users to escalate their own privileges. For
instance, an attacker could modify the User Rights Assignment to add themselves to the Domain
Admins group.

Privilege Escalation via GPOs: Attackers can modify or create GPOs that apply specific settings to users
or computers in the domain. By exploiting this, they can create backdoors or escalate privileges by
adjusting login scripts or security settings.

Overly Permissive Service Accounts

Service Account Mismanagement: Service accounts are often given elevated privileges because they
need to interact with certain services or perform administrative tasks. Attackers may compromise
service account credentials (e.g., via Pass-the-Hash or password dumps) and use them to escalate
privileges across the domain.

Service Principal Name (SPN) Abuse: Attackers can use tools like Kerberos to enumerate SPNs (Service
Principal Names) and identify service accounts. If they can compromise a service account, they may
gain the ability to escalate privileges or move laterally through the network.

Abuse of Delegated Permissions

Improper Delegation: AD allows for delegation of administrative tasks (such as managing specific OUs
or resources). If delegated permissions are not carefully managed or scoped, attackers can manipulate
these permissions to gain administrative control over critical areas of the AD domain.

Delegated Control to Domain Admins: Sometimes, delegation of control can be misconfigured to give
users or groups elevated access to resources they shouldn't be able to modify. Attackers may take
advantage of these permissions to escalate privileges.

Pass-the-Hash (PTH) Attack

In a Pass-the-Hash attack, attackers use the NTLM hash of a password rather than the password itself
to authenticate to a system. If they can extract NTLM hashes from a compromised system (using tools
like Mimikatz), they can move laterally within the network and escalate privileges by using these
hashes to impersonate high-privilege accounts.

Exploiting Insecure Domain Trusts

Domain Trusts: In a multi-domain or multi-forest environment, trusts are established to allow users
from one domain to access resources in another. Attackers may exploit insecure or misconfigured
trust relationships to escalate privileges, especially if the trust allows for transitive trust (i.e., trust
between domains that extends beyond the immediate relationship).

OFFENSO HACKERS ACADEMY 161

Exploiting Trusts for Lateral Movement: If an attacker can compromise a domain with a trust
relationship to another, they can potentially escalate privileges by moving laterally through the
trusted domains.

Abuse of Administrative Share Permissions

Admin Shares: Windows systems have administrative shares (e.g., C$, Admin$) that allow
administrators to remotely manage systems. Attackers can gain access to these shares if they
compromise an account with administrative rights, either by exploiting weak passwords, using Pass-
the-Hash, or gaining access to stored credentials.

NTLM Relay Attacks

NTLM Relay Attacks: In an NTLM relay attack, an attacker intercepts NTLM authentication traffic and
forwards it to a different service, impersonating the original user. By relaying NTLM authentication to
a target machine or service (especially a service that is running with higher privileges), the attacker
can escalate their privileges.

AdminSDHolder & Restricted Groups

AdminSDHolder Process: The AdminSDHolder process is responsible for maintaining strict security
group memberships (such as Domain Admins) within AD. However, if an attacker manages to gain
control of the AdminSDHolder process or can modify the AdminSDHolder object, they may be able to
add themselves to high-privileged groups.

Restricted Groups Policy: In environments where the Restricted Groups Policy is not configured
properly, attackers can potentially add themselves to groups with elevated privileges.

Exploiting Local Administrator Groups

Local Admin Group Misconfigurations: Local administrator groups on machines may be populated with
domain accounts, including those with high privileges. Attackers who compromise local accounts can
escalate to domain-level privileges if those local accounts are members of high-privilege domain
groups (such as Domain Admins).

OFFENSO HACKERS ACADEMY 162

Weak or Reused Credentials

Password Reuse: Users and administrators sometimes reuse passwords across different systems and
services. Attackers can exploit this by obtaining credentials for one system and using them to access
other systems, thereby escalating their privileges.

Weak Passwords: If administrators or users set weak passwords (e.g., “Password123”), attackers can
use brute force or dictionary attacks to crack the passwords and escalate privileges.

7.4.2. Tools Often Used for Privilege Escalation in AD

Mimikatz: A popular tool for extracting credentials (NTLM hashes, Kerberos tickets) from memory,
enabling attackers to perform Pass-the-Hash, Pass-the-Ticket, and Kerberos ticket forging attacks.

PowerView: A PowerShell tool used for enumerating and manipulating Active Directory objects,
helping attackers to identify privilege escalation opportunities.

BloodHound: A tool for mapping attack paths in Active Directory by identifying privilege escalation
and lateral movement opportunities in the AD environment.

Impacket: A collection of Python tools that can be used for SMB, LDAP, Kerberos, and other attacks,
aiding attackers in privilege escalation and lateral movement.

Netcat: Used for establishing reverse shells and exploiting remote services on compromised systems.

7.4.3. Mitigating Privilege Escalation Risks in AD:

Apply the Principle of Least Privilege (PoLP): Ensure that users and groups are assigned only the
permissions they need to perform their tasks.

Implement Strong Password Policies: Enforce strong, complex passwords and regularly rotate
credentials for privileged accounts.

Use Multi-Factor Authentication (MFA): Enforce MFA for all high-privilege accounts, particularly for
administrative and service accounts.

Regularly Audit and Monitor AD: Set up auditing to track changes in group memberships, privileged
account activity, and suspicious access patterns.

OFFENSO HACKERS ACADEMY 163

Restrict and Protect Service Accounts: Avoid giving service accounts excessive privileges and regularly
rotate their passwords.

Limit Domain Trusts: Carefully configure and monitor trust relationships between domains or forests
to minimize exposure to privilege escalation.

Patch Vulnerabilities: Regularly update and patch AD-related services and Windows systems to
mitigate known vulnerabilities.

7.5. Active Directory (AD) attacks

Active Directory (AD) attacks are a significant concern for organizations due to AD's central role in
managing user authentication, authorization, and network resources. Effective security measures and
mitigations are essential to protect AD environments from exploitation. Below are common AD attacks
and the corresponding mitigations:

Pass-the-Hash (PTH) Attack

Attack Description: In a Pass-the-Hash (PTH) attack, an attacker captures the NTLM hash of a password
(often through a tool like Mimikatz) and uses it to authenticate as the user without needing to know
the plaintext password. This is especially dangerous when attackers can steal hashes for high-privilege
accounts, such as domain administrators.

Mitigations:

• Disable SMBv1: Disable older protocols like SMBv1, which are vulnerable to attacks and
facilitate the use of hashes over the network.

• Use Kerberos Authentication: Enforce Kerberos as the default authentication protocol in
Windows environments, as it is more secure than NTLM.

• Implement Local Administrator Password Solution (LAPS): LAPS stores local administrator
passwords securely and ensures they are unique on every machine, reducing the risk of Pass-
the-Hash attacks.

• Enforce Strong Password Policies: Ensure passwords are complex and regularly rotated to
make hashes harder to crack.

OFFENSO HACKERS ACADEMY 164

Kerberos Ticket Forging (Golden Ticket)

Attack Description: A Golden Ticket attack involves an attacker compromising the KRBTGT account,
which is responsible for signing Kerberos Ticket Granting Tickets (TGT). With the KRBTGT account's
credentials (either via dumping the NTLM hash or exploiting vulnerabilities), an attacker can forge
TGTs, allowing them to impersonate any user, including domain admins, across the entire domain.

Mitigations:

• Secure KRBTGT Account: Regularly change the KRBTGT account password, at least every 180
days, and ensure the account has no unnecessary delegation.

• Monitor for Unusual Kerberos Activity: Use Event ID 4769 in Windows event logs to detect
abnormal TGT requests or unusual Kerberos activity.

• Use Advanced Threat Analytics (ATA): Microsoft ATA can help detect and alert on abnormal
Kerberos activity and Golden Ticket attacks.

• Enable Protected Users Group: This group limits the types of authentication that can be used
for specific accounts, reducing the chances of Kerberos-related attacks.

Kerberos Ticket Replay (Pass-the-Ticket)

Attack Description: In a Pass-the-Ticket (PTT) attack, an attacker steals a valid Kerberos service ticket
(usually via Mimikatz) from a compromised system and uses it to authenticate to services without
needing the user’s password.

Mitigations:

• Encrypt Network Traffic: Use SMB signing, Kerberos encryption, and IPsec to encrypt
communication between systems and reduce the risk of ticket interception.

• Implement Least Privilege: Limit the privileges of accounts and services to reduce the impact
of an attacker gaining access via stolen tickets.

• Use Smart Cards or MFA: Enforce Multi-Factor Authentication (MFA) for accessing high-
privilege services to make stolen tickets ineffective.

• Regularly Audit Ticket Requests: Review Kerberos logs for unusual or unauthorized ticket
requests.

OFFENSO HACKERS ACADEMY 165

Lateral Movement Using Service Accounts

Attack Description: Service accounts, particularly those with high privileges, are common targets for
lateral movement. Attackers compromise these accounts to escalate their access across the domain
or gain persistent control.

Mitigations:

• Use Managed Service Accounts (MSAs): MSAs automatically handle password changes and
improve service account management.

• Implement Role-Based Access Control (RBAC): Limit service accounts to the minimum
necessary privileges to perform their tasks.

• Regularly Rotate Service Account Credentials: Use Windows Server LAPS or a similar tool to
automatically rotate service account passwords to prevent reuse.

• Monitor and Audit Service Account Usage: Audit for unusual logins or behavior from service
accounts and restrict their usage to only necessary services.

Privilege Escalation via Misconfigured Permissions

Attack Description: Improperly configured AD permissions or delegated control can allow users or
groups to escalate privileges. For example, a user might gain control over an OU or group and add
themselves to privileged groups like Domain Admins.

Mitigations:

• Follow the Principle of Least Privilege: Ensure that only the minimal set of users and groups
have access to sensitive AD objects.

• Regularly Review Delegated Permissions: Audit all delegated permissions in the AD
environment to ensure that they are appropriate and do not allow unauthorized privilege
escalation.

• Use Group Managed Service Accounts (gMSA): Instead of assigning local admin rights to
specific users, use gMSAs to improve security for services that need elevated privileges.

• Secure Group Memberships: Limit membership in privileged groups like Domain Admins,
Enterprise Admins, etc., and regularly audit group memberships.

Abuse of AdminSDHolder

Attack Description: The AdminSDHolder process is responsible for maintaining the group membership
of high-privilege accounts (like Domain Admins). If misconfigured, attackers can escalate privileges by
manipulating the AdminSDHolder process.

Mitigations:

• Regularly Audit AdminSDHolder: Ensure that the AdminSDHolder process is not misused or
altered by unauthorized users or administrators.

• Use Fine-Grained Delegation: Ensure that delegation of administrative privileges is done using
the principle of least privilege to reduce exposure to AdminSDHolder abuse.

• Restrict Access to AdminSDHolder Objects: Implement access control lists (ACLs) to restrict
who can modify sensitive AD objects managed by AdminSDHolder.

OFFENSO HACKERS ACADEMY 166

Denial-of-Service (DoS) Attacks via DDoS or AD Exploits

Attack Description: Denial-of-Service (DoS) attacks targeting AD services can prevent users from
accessing the network or AD-related resources. Attackers may exploit vulnerabilities in services like
LDAP, Kerberos, or DNS.

Mitigations:

• Implement Rate Limiting and Anti-DDoS Measures: Use firewalls, load balancers, and DDoS
protection services to detect and mitigate excessive requests or malicious traffic.

• Harden Domain Controllers: Ensure domain controllers (DCs) are physically and network-
secured, and limit external exposure to only necessary services.

• Regular Patching: Apply critical patches to all AD-related services and Windows Server
installations to fix any vulnerabilities that may be exploited in DoS attacks.

• Monitor Network Traffic: Use network intrusion detection systems (NIDS) and log aggregation
systems to monitor for unusual traffic patterns that may indicate a DoS attack.

AD Enumeration and Reconnaissance

Attack Description: Attackers can enumerate the AD environment to gather valuable information such
as user lists, group memberships, and service accounts. Tools like PowerView and BloodHound are
often used for this purpose.

Mitigations:

• Limit LDAP Exposure: Restrict access to LDAP (port 389) and other directory services by using
firewalls or implementing internal network segmentation.

• Use Group Policy to Restrict AD Enumeration: Configure Group Policy Objects (GPOs) to limit
the visibility of certain user attributes and groups.

• Implement Least Privilege Access for Service Accounts: Ensure that service accounts used for
enumeration do not have unnecessary privileges to perform directory enumeration.

• Implement Anti-Enumeration Measures: Monitor network traffic and use security software to
detect and block tools used for AD enumeration (like BloodHound or Nmap).

OFFENSO HACKERS ACADEMY 167

DNS Spoofing or Poisoning

Attack Description: An attacker may exploit DNS configurations to redirect traffic to malicious servers
or intercept AD-related traffic. This could lead to man-in-the-middle attacks or unauthorized access to
sensitive resources.

Mitigations:

• Use DNSSEC (DNS Security Extensions): DNSSEC helps protect against DNS poisoning by
ensuring the integrity of DNS data.

• Harden DNS Servers: Ensure DNS servers are securely configured, do not expose unnecessary
ports to the internet, and have proper access controls.

• Monitor DNS Queries: Regularly monitor and audit DNS logs for suspicious queries, especially
for privileged accounts or critical resources.

Unsecured LDAP Traffic (LDAP Injection)

Attack Description: Unencrypted LDAP traffic or misconfigured LDAP queries can allow attackers to
intercept or manipulate queries to retrieve sensitive information or change AD data.

Mitigations:

• Enforce LDAP over SSL/TLS (LDAPS): Use LDAPS (port 636) to ensure LDAP traffic is encrypted,
protecting it from interception and modification.

• Implement Strong Query Validation: Validate all LDAP queries and inputs to prevent LDAP
injection attacks, which can alter queries and expose sensitive data.

• Limit LDAP Access: Restrict LDAP access to authorized systems only and use firewalls to limit
exposure.

OFFENSO HACKERS ACADEMY 168

API Penetration Testing

What is an API?

API stands for Application Programming Interface. It is a set of rules and protocols that allows
different software applications to communicate with each other. Think of an API as a bridge that
connects two systems, enabling them to exchange data or functionality without directly sharing their
internal details.

How Does an API Work?

An API works as an intermediary between a client (e.g., a user or application) and a server (e.g., a
database or backend system). It enables the client to request specific data or functionality from the
server, and the server responds with the requested information or action.

• Request: A client (like a mobile app or website) sends a request to the API asking for specific
data or an action.

• Processing: The API processes the request and checks if it’s valid (e.g., authorized).
• Server Interaction: If needed, the API talks to the server to fetch the requested data or

perform the action.
• Response: The API sends the result back to the client, usually in a readable format like JSON

or XML.

OFFENSO HACKERS ACADEMY 169

What is API Testing?

API testing is the process of testing an Application Programming Interface (API) to ensure it functions
as expected. Unlike traditional software testing (which tests user interfaces), API testing focuses on
the communication between different software systems and ensures that the API endpoints behave
correctly under various conditions.

API testing typically involves testing the backend services of an application. This can include testing
the business logic, data flow, and security. Since APIs handle much of the underlying functionality of
applications, it's crucial to validate their performance, reliability, and security.

Why API Testing is Important:

Efficiency: APIs are critical to the communication between systems. Testing APIs ensures smooth
interaction and prevents issues that could impact the entire system.

Automation: Unlike UI testing, which is more prone to breaking with changes, API tests can be
automated and run more efficiently.

Faster Feedback: Testing APIs early (e.g., in a continuous integration pipeline) provides quick feedback,
helping developers address issues faster.

Validation of Business Logic: APIs often contain the core business logic of an application. Testing
ensures the logic works correctly without relying on the UI.

OFFENSO HACKERS ACADEMY 170

8.1. Types of API Tests

It refers to the different methods used to evaluate an API's functionality, performance, security, and
reliability. Each type focuses on specific aspects of the API to ensure it meets requirements, handles
errors properly, integrates seamlessly with other systems, and performs well under various
conditions.

Validation Testing:

• Ensures that the API meets the expected behavior, specifications, and requirements.
• Focuses on verifying data formats, input/output correctness, and compliance with API

standards
• E.g., ensuring endpoints return accurate responses, proper status codes, and expected data

structures.

Security Testing:

• Ensure the API is secure from threats like unauthorized access, data breaches, and injection
attacks.

• Validate user authentication, authorization, encryption (e.g., SSL/TLS), and secure data
handling.

• E.g., If an API endpoint requires a user to log in, security testing ensures that only authorized
users can access the data and that sensitive information, like passwords, is encrypted.

Load/Stress Testing:

• Evaluate the API’s performance under high traffic or usage.
• Helps identify bottlenecks and ensure the API can handle the expected load.
• E.g., Load testing a login API involves simulating thousands of simultaneous login requests to

ensure the API can handle a large number of users attempting to log in at the same time
without slowing down or crashing.

OFFENSO HACKERS ACADEMY 171

Integration Testing:

• Ensures that different components or systems that interact with the API work together as
expected.

• Focuses on validating the API’s interaction with external systems, databases, or other APIs to
confirm that data flows correctly between them.

• E.g., When an API retrieves data from a database, integration testing ensures that the API
correctly interacts with the database, fetches the right data, and returns it to the user as
expected.

Error Handling Testing:

• Ensure the API correctly handles invalid requests (e.g., wrong HTTP methods, missing
parameters, invalid data types).

• Verify the API returns proper error messages and status codes (e.g., 404 for not found, 500
for server error).

Unit Testing:

• Ensures that individual components or functions of the API work as expected in isolation.
• Focuses on testing small parts of the code, like specific functions or methods, to verify their

behavior without relying on external systems or dependencies.
• E.g., For an API that calculates the total price of items in a cart, unit testing would check if the

calculation function works correctly when given different inputs, ensuring that it returns the
correct total amount.

API Hacking:

• Involves exploiting vulnerabilities in an API to gain unauthorized access or manipulate data.
• Focuses on identifying weaknesses such as poor authentication, improper input validation, or

lack of encryption that can be exploited by attackers to bypass security measures.
• E.g., An attacker might use API hacking to manipulate an API endpoint to change a user’s

account balance or retrieve sensitive information by bypassing authentication checks or
using weak or default credentials.

Regression Testing:

• Ensures that new code changes or updates do not negatively impact the existing functionality
of the API.

• Focuses on re-running previously conducted tests to confirm that the API still performs as
expected after updates or bug fixes.

• E.g., After updating an API to add a new feature, regression testing ensures that the previous
features, like user login or data retrieval, still work correctly without any issues.

Functional Testing:

• Verify that the API performs the intended functionality (e.g., creating a user, fetching data,

updating records).
• Focuses on input validation, correct responses, and adherence to the API documentation.

OFFENSO HACKERS ACADEMY 172

UI Testing:

• Ensures that the user interface of the application is functional, user-friendly, and visually
consistent with the design specifications.

• Focuses on verifying the behavior of UI elements such as buttons, forms, menus, and overall
layout, ensuring they respond correctly to user interactions.

• E.g., In a web application, UI testing checks that buttons perform their intended actions (like
submitting a form) and that the layout displays correctly on different devices or screen sizes.

Boundary Testing:

• Ensures the API handles input values at the edge of acceptable ranges correctly.
• Focuses on testing the API with minimum, maximum, just below, and just above the

boundary values to verify its behavior.
• For an API that accepts an age parameter (e.g., 18 to 60), boundary testing would involve

testing with values like 17, 18, 60, and 61 to ensure it correctly accepts or rejects inputs at
and beyond the limits.

8.2. API Testing Workflow

The API testing workflow involves a series of systematic steps to ensure that an API functions
correctly, securely, and efficiently.

Understanding the API: Study the API documentation, which typically provides information about
endpoints, methods (GET, POST, PUT, DELETE), request parameters, response formats, and status
codes.

Choosing the Testing Tool: Several tools are available for API testing. Common ones include:

• Postman: A popular tool for manually testing APIs. It provides a user-friendly interface to send
requests and view responses.

• SoapUI: A testing tool that supports both REST and SOAP APIs, commonly used for functional
and security testing.

• JMeter: Often used for performance and load testing APIs.
• RestAssured: A Java-based library for API testing, used for automating API tests in a CI/CD

pipeline.
• Insomnia: Another API testing tool with a sleek interface for working with RESTful services.

Creating Test Cases: Define the input values (parameters), expected responses, and the conditions
under which the API should be tested.

Include positive test cases (valid inputs) and negative test cases (invalid inputs).

Testing: Use the chosen tool to send requests to the API and check the responses.

Validate the response code, response body, and other important details (e.g., headers, time taken for
request).

Analyzing Results: Ensure that the response matches the expected output.

Look for errors in the status codes (e.g., 400, 404, 500) and the response body (e.g., unexpected data).

OFFENSO HACKERS ACADEMY 173

Example of API Testing Process with Postman:

Let’s assume we are testing a simple API that manages users.

GET /users:

Request: GET http://api.example.com/users

Expected Response: A list of users in JSON format.

Assertions:

Status code 200.

Response body contains a list of user objects.

Response time is under 200ms.

POST /users (Create User):

Request: POST http://api.example.com/users

Request body: { "name": "John Doe", "email": "john@example.com" }

Expected Response: A success message with the created user’s details.

Assertions:

Status code 201 (Created).

Response contains the user's name and email.

Database is updated with the new user.

PUT /users/{id} (Update User):

Request: PUT http://api.example.com/users/1

Request body: { "name": "John Updated", "email": "johnupdated@example.com" }

Expected Response: The updated user details.

Assertions:

Status code 200.

Response contains updated information.

DELETE /users/{id} (Delete User):

Request: DELETE http://api.example.com/users/1

Expected Response: Confirmation of the deletion.

Assertions:

Status code 204 (No Content).

The user is no longer available in the database.

http://api.example.com/users
http://api.example.com/users
mailto:john@example.com
http://api.example.com/users/1
mailto:johnupdated@example.com
http://api.example.com/users/1

OFFENSO HACKERS ACADEMY 174

Common HTTP Status Codes to Check:

• 200 OK: The request was successful.
• 201 Created: The resource was successfully created.
• 400 Bad Request: The request was malformed or invalid.
• 401 Unauthorized: Authentication failed or missing.

• 403 Forbidden: The server understood the request but refuses to authorize it.
• 404 Not Found: The resource does not exist.
• 500 Internal Server Error: Server encountered an error.

Best Practices for API Testing

• Automate: Automate API tests wherever possible to ensure frequent and consistent
validation.

• Use Mocking: Use mock servers when the actual API is unavailable or to simulate different
conditions for testing.

• Test in Isolation: Each API test should be independent of other tests to ensure modularity.
• Focus on Security: Test for common vulnerabilities, such as SQL injection, XSS, or lack of

encryption.
• Validate Data: Ensure that the API returns correct data, including edge cases and data

validation errors.

OFFENSO HACKERS ACADEMY 175

8.2. Introduction to APIs and REST

API stands for Application Programming Interface. It is a set of rules and protocols that allows different
software applications to communicate with each other. APIs define the methods and data formats
that applications can use to request and exchange information.

For example, when you use a weather app on your phone, it may use an API to fetch weather data
from a remote server. The app sends a request to the server's API, which then processes the request
and returns the data to the app.

APIs can be used for many purposes, such as:

• Accessing databases
• Integrating third-party services (e.g., payment gateways, social media)
• Retrieving data from a server
• Enabling Communication Between Software Systems
• Automation of Tasks
• Mobile and Web App Integration
• APIs allow IoT devices to communicate with central servers or cloud platforms, sharing data

for analysis or controlling devices remotely.
• Authorization and Authentication
• Providing Public Data
• Machine Learning and AI Models
• Payment Processing

8.2.1. What is REST?

REST is an architectural style for designing networked applications. It relies on stateless, client-server
communication and uses standard HTTP methods (GET, POST, PUT, DELETE) for interaction. RESTful
APIs are designed to be simple, lightweight, and scalable, where each endpoint is associated with a
resource (such as data or services) that can be accessed or modified via standard HTTP requests.

OFFENSO HACKERS ACADEMY 176

Key concepts of REST:

• Stateless: Each API request is independent, and the server does not store any state between
requests.

• Client-Server Architecture: The client and server are separate entities that communicate via
requests and responses.

• Uniform Interface: REST APIs use a standard set of operations (such as GET, POST, etc.) and
return data in a consistent format, often JSON or XML.

• Resources: In REST, everything is considered a resource, such as a user, post, or image, and
can be accessed via unique URLs (Uniform Resource Identifiers).

• Representation: Resources can be represented in different formats (JSON, XML, HTML, etc.),
and the client interacts with the resource in this format.

HTTP Methods in REST APIs:

• GET: Retrieve data from the server (e.g., get a list of users).
• POST: Send data to the server (e.g., create a new user).
• PUT: Update existing data on the server (e.g., update user information).
• DELETE: Remove data from the server (e.g., delete a user).

Example of a RESTful API: Let's say you're working with an API for managing a list of books. The API
might have the following endpoints:

• GET /books: Retrieve all books.
• GET /books/{id}: Retrieve a single book by its ID.
• POST /books: Add a new book.
• PUT /books/{id}: Update an existing book.
• DELETE /books/{id}: Delete a book.

In this example, the server handles the request based on the method used (GET, POST, PUT, DELETE)
and the resource (books) requested.

Benefits of APIs and REST

• Interoperability: Different systems and platforms can communicate seamlessly.
• Flexibility: APIs can support various formats like JSON, XML, etc.
• Scalability: RESTful APIs are stateless, which helps scale systems easily.
• Simplicity: REST is easy to understand and implement, using standard HTTP methods.

OFFENSO HACKERS ACADEMY 177

8.3. Common API vulnerabilities

Common API vulnerabilities are security weaknesses that can be exploited by attackers to compromise
the integrity, confidentiality, or availability of an API. Some of the most common API vulnerabilities
include.

Injection Attacks (e.g., SQL Injection)

Description: Occurs when untrusted data is passed into an API call and is improperly handled, allowing
attackers to manipulate or execute unintended commands (e.g., SQL, NoSQL, LDAP).

Impact: Data leakage, unauthorized access, or full control over the database.

Broken Authentication

Description: Flaws in authentication mechanisms, like using weak or predictable credentials, poor
session management, or improper token handling.

Impact: Attackers can impersonate users or gain unauthorized access to the system.

Example: Use of weak API keys or tokens.

OFFENSO HACKERS ACADEMY 178

Sensitive Data Exposure

Description: When APIs transmit sensitive information, such as passwords, credit card details, or
personal data, without proper encryption or protection.

Impact: Data leaks, theft of sensitive information, and compliance violations (e.g., GDPR).

Example: Not using HTTPS or improperly handling data at rest.

Broken Object Level Authorization (BOLA)

Description: Occurs when an API allows users to access data they should not be authorized to access
by manipulating parameters in the API request.

Impact: Unauthorized access to private or restricted data.

Example: Accessing another user's data by modifying the object ID in the URL (e.g., /user/123).

Excessive Data Exposure

Description: When an API responds with more data than necessary, potentially exposing sensitive or
unnecessary information. Excessive Data Exposure occurs when an API unnecessarily returns more
data than required, exposing sensitive information to unauthorized users. This often happens
because APIs send complete data objects without properly filtering or restricting the information
before returning responses. Attackers can exploit this by analyzing API responses to extract
confidential data such as personal details, financial information, or internal system data.

Impact: Attackers may obtain valuable data they were not supposed to access.

Example: Returning full database records with unnecessary fields.

OFFENSO HACKERS ACADEMY 179

Improper Error Handling

Description: APIs that provide too much detail in error messages (e.g., stack traces or detailed
database queries) may leak information that could assist an attacker in exploiting other
vulnerabilities.

Impact: Exposure of internal architecture, paths, or database structures.

Example: Detailed error messages returned to end users.

Cross-Site Scripting (XSS)

Description: When APIs fail to properly sanitize input, an attacker can inject malicious scripts that
execute in the user's browser.

Impact: Data theft, session hijacking, or cross-site attacks.

Example: Including user input directly into API responses without escaping it.

Cross-Site Request Forgery (CSRF)

Description: When an API allows attackers to trick users into performing unwanted actions without
their consent by making requests on their behalf.

Impact: Users can be tricked into performing malicious actions unknowingly.

Example: Changing account settings via a malicious link.

Insecure Deserialization

Description: When APIs deserialize untrusted or tampered data, which can lead to code execution or
other attacks.

Impact: Remote code execution, data manipulation, or privilege escalation.

Example: Attacker submits maliciously crafted serialized data that exploits vulnerabilities in the API.

OFFENSO HACKERS ACADEMY 180

Misconfigured API Gateway / Security Controls

Description: When API gateways or security mechanisms like firewalls, access control lists (ACLs), and
content filtering are misconfigured.

Impact: API endpoints could be exposed to unauthorized access or attacks.

Example: Allowing open access to sensitive API endpoints without proper authentication or
authorization.

Unvalidated Redirects and Forwards

Description: APIs that redirect users to untrusted URLs or improperly handle redirects can be
leveraged by attackers to cause users to visit malicious sites.

Impact: Phishing, malware installation, or manipulation of user actions.

Example: Redirecting users to a malicious site based on an unvalidated URL parameter.

Lack of Input Validation

Description: APIs that fail to properly validate user input or sanitize data could allow attackers to
exploit vulnerabilities.

Impact: Various types of attacks, including injection, data manipulation, or buffer overflows.

Example: Accepting unsanitized user input that is directly incorporated into an SQL query.

Insecure Communication (Man-in-the-Middle Attacks)

Description: When APIs fail to use secure protocols (e.g., HTTPS), attackers can intercept or alter data
in transit.

Impact: Data theft, tampering with communication, or impersonation of users.

Example: API calls over HTTP instead of HTTPS.

OFFENSO HACKERS ACADEMY 181

Lack of Rate Limiting

Description: APIs that do not enforce rate limiting allow attackers to make a large number of requests
in a short time, leading to denial of service or brute force attacks.

Impact: Overloading servers, triggering security vulnerabilities (e.g., brute force login attempts).

Example: No limits on the number of failed login attempts.

API Key Leaks

Description: API keys or credentials accidentally exposed in code repositories, logs, or error messages.

Impact: Unauthorized access to API resources, abuse of API quotas, or data exfiltration.

Example: API key found in a public GitHub repository.

OFFENSO HACKERS ACADEMY 182

8.4. API authentication and authorization testing

API authentication and authorization testing are crucial parts of API security assessment. They ensure
that only authorized users can access resources and that authentication mechanisms are working
correctly. Below is an overview of the concepts and techniques used for API authentication and
authorization testing:

Authentication Testing:

Authentication ensures that users are who they say they are. This process typically involves verifying
a user's identity, often via credentials such as usernames, passwords, tokens, or other methods.

OFFENSO HACKERS ACADEMY 183

Key Authentication Methods

• Basic Authentication: Sends the username and password in the Authorization header as a
base64-encoded string.

• Bearer Token Authentication: Uses tokens (like JWT) in the Authorization header to
authenticate API requests.

• OAuth 2.0: A protocol that allows third-party applications to access resources on behalf of a
user without exposing credentials.

• API Keys: A unique identifier assigned to each user or application to authenticate requests.
• Multi-Factor Authentication (MFA): A method that requires two or more verification factors,

usually combining something you know (password), something you have (token), and
something you are (biometrics).

Authentication Testing Scenarios:

Valid Authentication:

• Ensure that valid credentials (username/password, API key, or token) allow access to the
resource.

• Test the endpoint with a valid API key, token, or credentials to check if access is granted.

Invalid Authentication:

• Send incorrect credentials and check that the API returns an appropriate error message (e.g.,
401 Unauthorized).

• Test with invalid tokens or incorrect API keys to verify that the API denies access.
• Attempt with expired tokens to ensure they are rejected.

Token Expiry and Revocation:

• Test how the API handles expired tokens (e.g., JWT tokens) and ensure the server returns a
proper error (e.g., 401 Unauthorized or 403 Forbidden).

• Test the behavior of API when tokens are revoked or invalidated.

Session Management:

• Test how sessions are handled after login, including automatic logout after token expiry or
after certain periods of inactivity.

• Ensure that multiple sessions for the same user are handled securely.

Brute Force Attack Prevention:

• Check for rate limiting and account lockout mechanisms to prevent brute force login attempts.
• Test repeated login attempts with incorrect credentials and see if the system locks out the

user or enforces CAPTCHA.

Testing for Insecure Authentication:

• Test if authentication mechanisms like Basic Authentication are transmitted over HTTP instead
of HTTPS, as this would expose credentials in transit.

• Check for weak or default passwords.

OFFENSO HACKERS ACADEMY 184

Authorization Testing

Authorization ensures that authenticated users have permission to access specific resources or
perform specific actions. It ensures that users only have access to the resources and actions they are
authorized to access based on roles or permissions.

Authorization Types:

• Role-Based Access Control (RBAC): Access is granted based on the roles assigned to a user.
• Attribute-Based Access Control (ABAC): Access is based on attributes (user’s role, time of day,

device type, etc.).
• Access Control Lists (ACL): A list of permissions attached to each resource or object in the

system.

Authorization Testing Scenarios

Access Control for Different Roles:

• Test that users with different roles (e.g., admin, user, guest) only have access to authorized
resources.

• For example, ensure that an admin can access all resources while a regular user can access
only their own data.

Horizontal Privilege Escalation:

• Test whether one user can access another user's data. For example, if two users share the
same role, ensure that they cannot access each other’s private resources.

• Try accessing a resource by manipulating the request, such as changing the user_id in the URL
(/user/123 to /user/456).

OFFENSO HACKERS ACADEMY 185

Vertical Privilege Escalation:

• Test whether a user with lower privileges can access resources or actions that should be
restricted to higher privileged users (e.g., a regular user attempting to access admin-only
endpoints).

API Endpoint Restrictions:

• Verify that sensitive API endpoints (e.g., /admin, /users/{id}/delete) are only accessible by
users with the appropriate roles or permissions.

• Ensure that API methods (GET, POST, DELETE) are restricted to users with the necessary rights
(e.g., an authenticated user can view their data, but only admins can delete data).

Access to Sensitive Data:

• Ensure that access to sensitive data (e.g., personal data, financial records) is protected with
proper authorization checks.

• Test for data exposure where an unauthorized user could retrieve sensitive information.
Authorization Bypass:

• Test if an attacker can bypass authorization by manipulating the request, such as changing the
API request's parameters or exploiting a bug in the authorization logic.

• Check for issues like lack of authorization checks on URL parameters (e.g., /account/1234) or
cookie-based session management flaws.

Unnecessary Permissions:

• Ensure that API endpoints or user roles do not expose unnecessary permissions. For example,
ensure that users don’t have DELETE permissions when they only need READ access.

Token Scoping:

• If OAuth or API keys are used, verify that tokens are appropriately scoped (e.g., tokens for
accessing read-only resources should not allow write access).

• Test that tokens with restricted permissions do not allow actions outside their scope.

OFFENSO HACKERS ACADEMY 186

Testing Tools

Several tools can assist in API authentication and authorization testing:

• Postman: Used for manual API testing, including authentication and authorization scenarios.
• OWASP ZAP (Zed Attack Proxy): A tool for automated penetration testing, useful for checking

security vulnerabilities including authorization issues.
• Burp Suite: Provides automated scanning and manual testing features for authentication and

authorization flaws.
• JWT.io: Useful for testing and decoding JWT tokens, verifying the signature, and inspecting

claims.

Automated Tests

• Unit Tests: Use automated unit tests to verify authentication and authorization logic, such as
token validation, role-based access, and permission checks.

• Integration Tests: Test real-world API calls with actual credentials or tokens to ensure the
entire system (authentication, authorization, and business logic) works together.

OFFENSO HACKERS ACADEMY 187

Best Practices for API Authentication and Authorization Testing:

• Use HTTPS: Ensure that authentication and authorization data is transmitted over HTTPS to
protect sensitive information.

• Least Privilege: Ensure that users and applications have only the minimum permissions
necessary to perform their tasks.

• Regular Token Rotation: Regularly rotate API keys, access tokens, and passwords to minimize
the risk of token compromise.

• Granular Permissions: Apply fine-grained access control to API resources and actions.
• Account Lockouts: Implement mechanisms to prevent brute force attacks, such as account

lockouts or CAPTCHAs.
• Audit Logs: Ensure all authentication and authorization actions are logged for auditing

purposes.

OFFENSO HACKERS ACADEMY 188

Cyber Security Overview

The Cybersecurity Handbook for Beginners serves as a comprehensive resource for individuals seeking
foundational and practical knowledge in cybersecurity. It begins with an introduction to cybersecurity
concepts, highlighting its importance, common threats, and career paths in the field. Networking
fundamentals are explored in depth, covering key concepts like the OSI and TCP/IP models, IP
addressing, firewalls, and VPNs. The guide delves into penetration testing, explaining its
methodologies, tools, and applications in various domains such as networks, web applications,
Android apps, APIs, and Active Directory environments. Each section provides a balance of theory and
practical exercises, including hands-on labs for skills application. Key topics like the OWASP Top 10
vulnerabilities, Android app reverse engineering, API security testing, and Active Directory privilege
escalation are presented with clarity, making the handbook a valuable learning tool for beginners
aiming to build a solid foundation in cybersecurity.

9.1. Developing a Penetration Testing (Pentesting) Plan

Penetration testing (pentesting) is the process of evaluating the security of a system, network, or
application by simulating an attack to find vulnerabilities before malicious actors can exploit them. A
penetration test typically includes a series of planned steps to assess the security of the target and
identify weaknesses.

Creating a solid pentesting plan is crucial for a comprehensive and effective test. The plan should
outline the scope, objectives, methods, tools, and procedures to follow. Here’s a step-by-step guide
to help you develop a penetration testing plan.

OFFENSO HACKERS ACADEMY 189

Define the Objectives and Scope of the Test

The first step in developing a pentesting plan is to clearly define the objective and scope. This will help
you focus on the critical areas and ensure the test is aligned with the organization’s goals.

Key Questions:

• What is the goal of the pentest?
Example: Identify vulnerabilities in the application, test the network’s ability to defend against
external attacks, assess the security of user authentication mechanisms.

• What systems, networks, or applications are to be tested?
Example: Web applications, internal network infrastructure, third-party services, APIs, or
mobile applications.

• What is the testing approach?
Example: Black-box testing (no knowledge of the system), white-box testing (full knowledge
of the system), or grey-box testing (partial knowledge).

• What are the boundaries?
Example: Testing the front-end of a web application, excluding the underlying backend
databases or infrastructure.

Scope Considerations:

OFFENSO HACKERS ACADEMY 190

• In-scope: Target systems, applications, or networks to be tested.

• Out-of-scope: Systems or areas that should not be tested (e.g., production systems, third-
party services, certain components).

Identify Resources and Constraints

Next, gather the necessary resources for the pentest and identify any potential constraints.

Resources:

• Tools: List the pentesting tools you will use (e.g., Kali Linux, Metasploit, Burp Suite, Nmap,
Wireshark).

• Personnel: Assign roles such as team leader, penetration testers, security analysts, and
network specialists.

• Time: Estimate how long the pentest will take, including preparation, execution, and reporting
phases.

Constraints:

• Time constraints: Are there any deadlines or limits on how long the pentest can take?
• Legal and compliance requirements: Are there specific laws or regulations that you need to

comply with (e.g., GDPR, PCI-DSS)?
• Testing hours: Will you be testing during business hours, or are there specific windows for

testing?

Risk Assessment

Before proceeding, conduct a risk assessment to evaluate the potential impact of testing on the
system and business operations.

Key Considerations:

• System impact: Could the test potentially disrupt the operations of the target system (e.g.,
denial of service or data loss)?

• Business impact: Could a failure in testing affect business continuity or customer operations?
• Authorization: Obtain written consent from the stakeholders to avoid legal repercussions and

ensure you’re authorized to conduct the test.

Mitigation:

• Backup systems: Ensure backups are available in case of disruption.
• Testing windows: Schedule tests during low-traffic hours to minimize potential disruptions.

Choose the Pentesting Methodology

OFFENSO HACKERS ACADEMY 191

Select the appropriate methodology to guide your testing process. This will ensure thorough and
organized testing.

Common Pentesting Methodologies:

• OWASP Testing Guide (for web application security testing): Covers testing web applications,
APIs, authentication, session management, and more.

• PTES (Penetration Testing Execution Standard): A comprehensive methodology that defines
the phases of a penetration test.

• NIST 800-115: Provides guidelines for technical information security testing.

• OSSTMM (Open Source Security Testing Methodology Manual): A framework for testing the
security of various environments.

General Testing Phases:

Planning and Reconnaissance (Information Gathering)

• Identify the target’s attack surface by gathering publicly available information (e.g., DNS,
WHOIS records, open ports).

• Perform footprinting to gather intelligence about systems and services in scope.

Scanning and Enumeration

• Scan for open ports, services, and vulnerabilities using tools like Nmap.
• Identify potential vulnerabilities that could be exploited during the attack.

Exploitation

• Attempt to exploit identified vulnerabilities to gain unauthorized access to systems,
applications, or networks.

• Common exploitation techniques: SQL injection, buffer overflow, privilege escalation.

Post-Exploitation

• If exploitation is successful, conduct post-exploitation activities to gather additional
information, escalate privileges, or maintain access.

• This phase may involve lateral movement across the network.

Reporting and Documentation

• Document findings, vulnerabilities, and successful exploitation attempts.
• Provide recommendations for remediating discovered vulnerabilities.

OFFENSO HACKERS ACADEMY 192

Create the Test Plan and Detailed Schedule

Prepare a detailed test plan that outlines the steps involved in each phase of the penetration test. This
should include the timeline, tools, and techniques to be used.

Key Elements:

• Test Objectives: Specific goals of the pentest.
• Target Systems: A detailed list of systems and applications to be tested.
• Testing Techniques and Tools: Specify the tools, scripts, and techniques that will be employed

for each phase.
• Timeline and Milestones: Create a schedule outlining each stage of the test (e.g., planning,

reconnaissance, exploitation, reporting).

Execute the Penetration Test

With the plan in place, begin executing the penetration test according to the methodology and
schedule. Ensure all activities are documented, including:

• The tools and techniques used
• Successful exploits
• Any unexpected behavior or outcomes

• Areas where the system could be improved

Reporting and Remediation Recommendations

Once the test is completed, the next step is to create a comprehensive report detailing the findings,
including both technical and business impact.

Report Contents:

• Executive Summary: A high-level overview of the test, highlighting the major findings and risks
in non-technical terms.

• Methodology: A summary of the steps, techniques, and tools used.
• Vulnerability Findings: Detailed descriptions of the vulnerabilities discovered, including risk

ratings (e.g., high, medium, low).
• Exploitation Results: A summary of the successful exploitations, including screenshots or logs

if necessary.
• Remediation Recommendations: Specific, actionable steps to fix vulnerabilities (e.g., patching

software, changing configurations).
• Proof of Concept: Where applicable, provide proof of concept for successful exploits.

Review and Follow-up

After the report is delivered:

• Review the findings with stakeholders and the security team.
• Discuss remediation steps and prioritize them based on the severity of the vulnerabilities.
• Conduct follow-up testing to verify that remediation actions have been implemented

successfully.

OFFENSO HACKERS ACADEMY 193

Best Practices:

• Confidentiality: Ensure all sensitive information from the test is stored and communicated
securely.

• Collaboration: Work closely with the internal IT team and security experts to understand the
context and potential impact of vulnerabilities.

• Continuous Improvement: Learn from each penetration test and incorporate lessons learned
into future security practices.

Information Security Risk Scale:

9.2. Reporting and documentation

Reporting and documentation are critical components of any penetration testing (pentesting)
engagement. A well-documented report serves to communicate the findings, impact, and
recommendations in a manner that stakeholders can understand and act upon. It should be clear,
thorough, and actionable for both technical and non-technical audiences.

OFFENSO HACKERS ACADEMY 194

9.2.1. Structure of a Pentesting Report

A typical pentesting report consists of several sections, each focused on providing critical information.

Executive Summary
The executive summary is a non-technical overview that provides high-level information about the
test, its goals, key findings, and recommendations.

• Purpose of the Engagement: A brief statement outlining the scope, objectives, and target
systems or networks of the pentest.

• Key Findings: A summary of the most critical vulnerabilities or issues discovered during the
testing. This should be concise but impactful.

• Overall Risk Assessment: A high-level evaluation of the overall risk to the organization based
on the findings. Mention whether the environment is highly vulnerable, or if it is generally
secure but has some significant issues.

• Recommendations: A short list of immediate actions or strategies that need to be addressed
(e.g., patching critical vulnerabilities, implementing more robust access controls).

• Conclusion: A general conclusion that ties the pentest’s goals, findings, and next steps
together.

Introduction

The introduction sets the context for the engagement and outlines the rules, scope, and methodology
used.

• Engagement Overview: Briefly describe the context of the pentest, including the
organization’s goals and the test's specific objectives.

• Scope: Clarify the systems, networks, applications, and devices that were tested. Explicitly
note exclusions.

• Rules of Engagement: Outline the agreed-upon constraints, such as timing, acceptable testing
methods, and specific restrictions (e.g., no DoS attacks, no social engineering).

• Testing Methodology: Detail the high-level approach, whether it was a black-box, white-box,
or gray-box test, and the general testing phases (reconnaissance, exploitation, post-
exploitation).

Methodology

This section describes the specific steps and techniques used to conduct the penetration test. It
provides transparency into the process and allows for future improvements.

• Reconnaissance: Explain the reconnaissance phase, including how information was gathered
(OSINT, network scanning, vulnerability scanning, etc.).

• Vulnerability Identification: Describe the methods used to discover vulnerabilities (e.g.,
automated scanners, manual testing, code review).

• Exploitation: Outline the techniques used to exploit vulnerabilities (e.g., exploiting SQL
injection, privilege escalation, etc.).

• Post-Exploitation: Discuss any actions taken after gaining access to systems, including lateral
movement, privilege escalation, and data exfiltration testing.

• Tools Used: List any penetration testing tools that were used (e.g., Nmap, Burp Suite,
Metasploit, Mimikatz, etc.).

OFFENSO HACKERS ACADEMY 195

Vulnerability Findings

This is the heart of the report. It provides a detailed analysis of each vulnerability found, its severity,
the method of exploitation, and impact.

• Vulnerability Overview: A brief description of each vulnerability, including how it was
identified (e.g., missing patches, weak configurations, input validation errors).

• Risk Assessment: The severity of each vulnerability, usually classified as:
• Critical: Immediate action required (e.g., remote code execution, privilege escalation).
• High: Significant but not urgent (e.g., SQL injection, weak password policies).
• Medium: Moderate risk (e.g., information disclosure, low-impact vulnerabilities).
• Low: Minor vulnerabilities that should still be addressed (e.g., outdated software, unused

services).
• Evidence: Screenshots, logs, or proof of concepts that demonstrate successful exploitation

(e.g., output from Metasploit, command-line results, screenshots of web app vulnerabilities).
• Impact: Explanation of the potential business impact if the vulnerability were exploited (e.g.,

data breach, service disruption, regulatory non-compliance).
• Remediation Recommendations: Actionable guidance for addressing each vulnerability (e.g.,

patching software, improving access controls, updating configurations).

Risk Analysis

Provide a deeper analysis of the overall risk to the organization based on the findings. This can include:

• Likelihood of Exploitation: Evaluate how likely it is for an attacker to exploit the vulnerability,
considering factors like ease of exploitation, exposure, and attacker skill level.

• Business Impact: Assess the potential business impact, such as reputational damage, financial
loss, or regulatory consequences.

• Residual Risk: After remediation efforts, what are the remaining risks, and how can they be
mitigated further?

• Threat Models: Identify possible threat actors (e.g., insiders, external attackers, script kiddies,
nation-state actors) and how each might exploit the vulnerabilities.

Recommendations

Provide comprehensive, actionable advice for improving security and addressing the vulnerabilities
discovered during the pentest.

• Immediate Remediation: Actions that should be taken right away (e.g., apply critical patches,
change weak passwords).

• Long-Term Improvements: Strategic recommendations, such as adopting security best
practices (e.g., implementing multi-factor authentication, improving access control policies,
conducting regular vulnerability assessments).

• Process Improvements: Recommendations on improving processes like change management,
patch management, and security monitoring.

OFFENSO HACKERS ACADEMY 196

9.2.2. Appendices

This section includes additional supporting documentation that can be referenced in the main report.

• Tools and Techniques Used: A list of all tools and techniques that were employed during the
testing process.

• Network Diagrams: Diagrams of the network infrastructure, highlighting the targets of the
pentest.

• Screenshots and Evidence: Screenshots of vulnerable systems or services, logs, or exploit
results that support the findings.

• Detailed Technical Findings: In-depth details on technical findings for those who want a
deeper understanding (e.g., full vulnerability scan results, detailed code analysis).

Audience: Technical teams, auditors, anyone who needs a deeper dive into the findings.

9.2.3. Best Practices for Reporting and Documentation

Clear and Concise Language

Use clear, concise language. Avoid jargon unless necessary, and always provide explanations for
technical terms. The goal is for the report to be understandable by both technical and non-technical
stakeholders.

Actionable Recommendations

Make sure that every vulnerability is paired with clear, actionable remediation advice. The client
should be able to immediately understand what needs to be fixed and how.

Executive Summary for Non-Technical Audience

The executive summary should be written in a way that senior management or non-technical
stakeholders can understand. Use risk assessments (Critical, High, Medium, Low) to categorize
vulnerabilities and the potential business impact.

Prioritize Vulnerabilities

Rank vulnerabilities based on severity and business impact, providing clients with a clear roadmap for
remediation. Highlight critical vulnerabilities that require immediate action.

Supporting Evidence

Always include evidence to support your findings. This can be in the form of screenshots, logs, or even
simple text descriptions of what was discovered. Supporting evidence strengthens the credibility of
your findings.

Formatting and Consistency

Use consistent formatting (headings, subheadings, bullet points, numbering) to make the report easy
to navigate.

Ensure the document is well-organized and easy to follow.

OFFENSO HACKERS ACADEMY 197

Visual Aids

Consider adding charts, diagrams, and screenshots to visually represent vulnerabilities, attack paths,
and impacts. This can help non-technical stakeholders grasp complex issues more easily.

Confidentiality and Privacy

Remove sensitive data or personal information if it isn’t relevant to the report.

Ensure that any public vulnerabilities, exploits, or vulnerabilities are responsibly reported, avoiding
unnecessary exposure.
9.2.4. Final Delivery and Follow-Up

Once the report is completed:

• Presentation to the Client: If possible, present the findings to the client, addressing any
questions or concerns they might have. Walk them through the critical findings and explain
the next steps.

• Offer Retesting: If significant vulnerabilities were found, offer to retest the system once
remediation has been completed to verify the effectiveness of the fixes.

• Provide Ongoing Support: Stay available for follow-up questions or advice as the client
addresses the issues.

In summary, a well-structured pentesting report should offer a clear picture of the security posture,
detail vulnerabilities found, and guide remediation efforts. Clear documentation will help the
organization fix security gaps and build a more robust security environment moving forward.

9.3. Ethical considerations in Pentesting

Ethical considerations are paramount in penetration testing (pentesting) because it involves
simulating attacks on systems, networks, and applications to identify vulnerabilities. Ethical
penetration testers must ensure that their actions align with legal, professional, and organizational
guidelines. Adhering to ethical principles ensures that the pentest is conducted responsibly, safely,
and with respect for privacy, confidentiality, and trust.

Below are key ethical considerations in pentesting:

Authorization and Scope

Written Consent

• Legal Authorization: Always obtain written consent from the organization or system owner
before starting the penetration test. This authorization should be detailed in the Rules of
Engagement (RoE) or a Contract that explicitly grants permission for testing and outlines the
systems and activities covered by the test.

• Clear Boundaries: Clearly define the scope of the engagement, including what is allowed and
what is not. Specify the systems, networks, applications, or devices to be tested, as well as
exclusions (e.g., no testing on certain critical infrastructure).

Why it matters: Testing systems without permission is illegal and unethical, and could result in legal
consequences. Unauthorized access to systems is a violation of privacy and can cause harm.

OFFENSO HACKERS ACADEMY 198

Confidentiality and Privacy

Non-Disclosure Agreements (NDAs)

• Sensitive Information: Penetration testing may expose sensitive data. Always sign an NDA to
ensure that you will not disclose any confidential or proprietary information encountered
during testing.

• Data Protection: If you discover sensitive data (e.g., personally identifiable information,
intellectual property), ensure that it is handled securely and that no data is exfiltrated or used
inappropriately. Data should never be shared with third parties unless explicitly allowed.

Why it matters: Protecting the confidentiality of client data is critical, and any breaches in privacy can
have severe legal, financial, and reputational consequences for both the tester and the client.
Avoidance of Harm

Minimizing Disruption

• Test During Off-Peak Hours: To minimize disruption to business operations, conduct testing
during off-peak hours or as agreed upon with the client. This is especially important when
performing tests that could cause service outages or degradation, such as DoS (Denial-of-
Service) testing.

• Impact on Systems: Do not intentionally exploit vulnerabilities that could lead to system
downtime, data loss, or other negative impacts unless explicitly authorized and agreed upon
by the client.

Why it matters: Penetration testing should improve security, not cause harm. Unintended disruptions
could negatively affect business operations, result in financial loss, or damage the organization’s
reputation.

Professional Conduct

Adhere to Professional Standards

• Industry Standards: Follow established industry standards and best practices (e.g., OWASP
Top 10, NIST SP 800-115, PTES) to conduct the penetration test in a structured, effective, and
responsible manner.

• Competence: Ensure that you have the necessary skills and knowledge to perform the test.
Don't engage in areas where you lack expertise, and if needed, refer the client to specialists.

• Avoid Overstepping Boundaries: Do not engage in activities that are outside the defined scope
of the test. This includes actions like social engineering attacks, physical penetration, or testing
systems that were not explicitly authorized for testing.

Why it matters: Adhering to professional standards and demonstrating competence ensures the
credibility of the test and protects the reputation of the tester and the organization. Overstepping
boundaries is unethical and could result in unapproved consequences.

OFFENSO HACKERS ACADEMY 199

 Transparency and Reporting

Clear and Honest Reporting

• Accurate Findings: Provide an honest and accurate representation of findings, without
exaggerating or downplaying vulnerabilities. Ensure the client receives a complete and
truthful overview of the security posture, including both critical and minor issues.

• Report Bias-Free: Don’t let external factors (e.g., personal opinions, financial motivations)
influence the reporting of vulnerabilities. The report should focus solely on the facts and
findings.

Why it matters: Accurate and transparent reporting is necessary to provide the client with an
unbiased, actionable assessment of their security posture. Misleading or incomplete reporting could
undermine trust and hinder the organization’s ability to properly address vulnerabilities.

Respect for Organizational Culture and Policies

Adhere to Client Policies

• Compliance with Internal Policies: Always align testing practices with the client’s internal
security policies, organizational culture, and regulatory requirements. If there are specific
guidelines for testing, follow them diligently.

• Respect the Business Environment: Take the client’s business operations into account, and
avoid testing methodologies that could unduly interfere with regular business processes or
customer experience.

Why it matters: Every organization has its own unique culture, risk tolerance, and operational needs.
Tailoring your approach ensures that the pentest is conducted respectfully and in line with the client's
goals and values.

Limiting Data Exposure and Exfiltration

Do Not Exfiltrate Data

• Data Handling: Never extract, share, or use sensitive data you may come across during testing
unless explicitly authorized. This includes login credentials, personal data, and intellectual
property.

• Controlled Data Use: If data exfiltration is necessary for the test (e.g., to simulate a data
breach), it must be documented in the scope, and proper security measures should be taken
to protect that data.

Why it matters: Data exfiltration can be highly sensitive, and without proper safeguards, it can cause
irreparable harm to both the client and the tester. Unauthorized handling or misuse of data can lead
to legal repercussions, privacy violations, and damaged trust.

OFFENSO HACKERS ACADEMY 200

Collaboration and Communication

Continuous Communication with the Client

• Regular Updates: Keep the client informed about the progress of the penetration test. This is
especially important if critical vulnerabilities are discovered that need to be addressed
immediately.

• Incident Response Collaboration: If you identify vulnerabilities that may be actively exploited
or lead to significant issues, work with the client’s incident response team to mitigate
immediate risks.

Why it matters: Transparency and collaboration throughout the pentesting process ensure that any
emerging threats are handled promptly and that the engagement is conducted in a constructive and
cooperative manner.

Respecting the Law

Adherence to Laws and Regulations

• Legal Boundaries: Penetration testers must always adhere to local, national, and international
laws governing cyber activities, including data privacy laws, hacking statutes, and other
relevant regulations.

• Avoid Illegal Activities: Never engage in activities that are outside the legal boundaries, such
as unauthorized access to systems, breaking encryption, or conducting illegal denial-of-service
(DoS) attacks.

Why it matters: Penetration testing is inherently a sensitive activity. Conducting tests outside the legal
framework can lead to criminal liability, legal penalties, and significant reputational damage.

Ending the Engagement Responsibly

Ensure Secure Handover of Findings

• Post-Test Follow-up: After the test, ensure that all findings, credentials, and data have been
securely handed over to the client, and any temporary access granted for testing purposes is
revoked.

• Clean Up: Remove any backdoors, credentials, or artifacts used during testing to ensure the
system is not left vulnerable after the engagement ends.

Why it matters: Ensuring a responsible and secure handover ensures that the client’s environment is
left in a safe state after testing. Failing to do so could inadvertently create vulnerabilities.

Ethical Responsibility to the Community

• Share Knowledge and Best Practices: Ethical penetration testers have a responsibility to
contribute positively to the cybersecurity community by sharing knowledge, discussing
emerging threats, and advancing ethical hacking practices.

• Avoid Harm to the Community: Do not use penetration testing skills to harm others, exploit
systems without authorization, or create tools or exploits that could be misused.

Why it matters: Penetration testers play a critical role in the cybersecurity community. Upholding the
ethics of responsible disclosure, knowledge sharing, and contributing to the development of security
best practices strengthens the overall cybersecurity ecosystem.

OFFENSO HACKERS ACADEMY 201

References:

• https://tryhackme.com/
• https://github.com/
• https://www.geeksforgeeks.org/
• https://portswigger.net/
• https://medium.com/
• https://chatgpt.com/
• http://www.pentest-standard.org/
• https://www.stationx.net/
• https://www.permit.io/
• https://www.akamai.com/
• https://www.kiwiqa.com/
• https://www.thesecuritybuddy.com/
• https://www.techtarget.com/
• https://www.cloudflare.com/

https://tryhackme.com/
https://github.com/
https://www.geeksforgeeks.org/
https://portswigger.net/
https://medium.com/
https://chatgpt.com/
http://www.pentest-standard.org/
https://www.stationx.net/
https://www.permit.io/
https://www.akamai.com/
https://www.kiwiqa.com/
https://www.thesecuritybuddy.com/
https://www.techtarget.com/
https://www.cloudflare.com/

+91 6235 722 722

info@o;ensoacademy.com

1st floor, Bethesda Tower, Pillar number 535,
PalarivaDom - Edappally Rd, Janatha,PalarivaDom,

Kochi, Ernakulam, Kerala 682025

	13152687bd629367fb5f6c6b99dcca4f82bf2fb01395eb6b01c73259837292bd.pdf
	f0b142b124557e73b76c07ad8a79c2ad70b83ca1a696d9cbe34419c7cb2e39af.pdf
	fc9fbe5ac1f7c7a7d92d56999025924ee527039043abf990acbc8d5713bbadd6.pdf

